
Discrete Mathematics (II) Spring 2013

Lecture 7: Tableau Proof System

Lecturer: Yi Li

1 Overview

In last lecture, we have defined consequence, the relationship between a proposition and a set of
propositions, on side of semantics. we prove the validity of a proposition semantically, according
to truth table. This lecture will consider how to prove the validity of a tautology. But the validity
would be guaranteed in the next lecture.

2 Atomic tableaux

For a given proposition, we can guess it true or false. In order to show our guess, we just associate
it with a sign T or F in front of it. A string like Fα and Tα is called signed proposition.

In preceding lectures, we have known that a compound proposition is constructed by some simpler
ones and the truth valuation between them must obey truth table. Because of the Adequacy
Theorem, all connective function can be represent by {¬,∧,∨}. For convenience, there are totally
five connectives in proposition logic.

We first figure out 12 atomic tableaux according to truth table as shown in Figure 1. We just take
(α → β) as the example. If a truth valuation V make (α → β) true, we must have either α is false
or β is true. Otherwise, we have α true or β false simultaneously. Vividly, we can use a branch to
represent “or” and a chain to represent “both ... and ...”.

With these atomic tableaux, we can expand a given proposition with a sign following this way:

Definition 1 (Tableaux). A finite tableau is a binary tree, labeled with signed propositions called
entries, such that:

1. All atomic tableaux are finite tableaux.

2. If τ is a finite tableau, P a path on τ , E an entry of τ occurring on P and ′τ is obtained
from τ by adjoining the unique atomic tableau with root entry E to τ at the end of the path
P , then ′τ is also a finite tableau.

If τ0, τ1, . . . , τn, . . . is a (finite or infinite) sequence of the finite tableaux such that, for each n ≥
0, τn+1 is constructed from τn by an application of (2), then τ = ∪τn is a tableau.

Example 1. A tableau with the signed proposition F (((α → β) ∨ (γ ∨ δ)) ∧ (α ∨ β)).

In order to characterize a tableaux, we define the following terms:

Definition 2. Let τ be a tableau, P a path on τ and E an entry occurring on P .
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Figure 1: Atomic tableaux of propositional logic

1. E has been reduced on P if all the entries on one path through the atomic tableau with root
E occur on P .

2. P is contradictory if, for some proposition α, Tα and Fα are both entries on P . P is finished
if it is contradictory or every entry on P is reduced on P .

3. τ is finished if every path through τ is finished.

4. τ is contradictory if every path through τ is contradictory.

Based on these terms, we can define what is a proof in a way with tableaux. Actually, we just
prove a proposition valid by contradiction, which means we just negate its every contrary side.

Definition 3. 1. A tableau proof of a proposition α is a contradictory tableau with root entry
Fα. A proposition is tableau provable, written ⊢ α, if it has a tableau proof.

2. A tableau refutation for a proposition α is a contradictory tableau starting with Tα. A propo-
sition is tableau refutable if it has a tableau refutation.

Of course, proof and refutation are dual to each other. Consider the following question, is refutation
necessary in our proof system?

3 Complete systematic tableaux

As we already know, there are many possible ways to expand the tableaux, which we mean which
entry is chosen and be reduced. If the proposition is complicated enough, the parsing tree would
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be big and it means there many nodes to handle. The we just run into a problem, how can you
guarantee that every entry in generated tableau are all reduced, which means the tableau is really
finished.

As a tableau is at most a binary-branching tree and also be a partial ordered set. However, if we
can make it order we can reduce node by node without omitting. Then we just assure a lexical
graphical order, which is defined level by level and left to right on a given tableau. We just call
this approach Complete Systematic Tableaux (CST) as the following.

Definition 4 (Complete systematic tableaux). Let R be a signed proposition. We define the
complete systematic tableau(CST) with root entry R by induction.

1. Let τ0 be the unique atomic tableau with R at its root.

2. Assume that τm has been defined. Let n be the smallest level of τm and let E be the leftmost
such entry of level n.

3. Let τm+1 be the tableau gotten by adjoining the unique atomic tableau with root E to the end
of every noncontradictory path of τm on which E is unreduced.

The union of the sequence τm is our desired complete systematic tableau.

This method is tedious for us when the size of a proposition is small. However, it is proper for
a program to reduce a given proposition with sign mechanically. CST can guarantee that no
unreduced nodes are left for every entry is ordered with a number and CST just reduce them one
by one according to that order.

We can check the procedure in detail. The entries are examined level by level and from left to
right in the same level. Suppose CST is processing the entries on level n. The atomic tableau
corresponding to the current unreduced entry must be adjoined to the entries on the level no less
than n.

However, there are still some issue should be taken into consideration if we really think algorith-
mically. What’s the time complexity for a node to be reduced and be adjoined in every noncontra-
dictory path which pass that node?

4 Properties of CST

There are some good properties of CST, which will be introduced in the next class.

Theorem 5. Every CST is finished.

Proof. Reduce the E level by level and from left to right until that there is no E unreduced for
any fixed level. Every entry has a number. Given an unreduced entry En, say n. If the current
processing entry is m. After finite step, actually n−m steps, it will be reduced.

Theorem 6. If τ = ∪τn is a contradictory tableau, then for some m, τm is a finite contradictory
tableau. Thus, in particular, if a CST is a proof, it is a finite tableau.
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Proof. By König lemma. Because a contradictory path must be finite and infinite tree with finite
branch must has a infinite path. It is contradictory.

In order to prove the finiteness of every CST, we first give the following definition.

Definition 7. We define d(α), the degree of a proposition α by induction.

1. if α is a propositional letter, then d(α) = 0.

2. if α is ¬β, then d(α) = d(β) + 1.

3. if α is β ∨ γ, β ∧ γ, or β → γ, then d(α) = d(β) + d(γ) + 1.

The degree of a signed proposition Tα or Fα is the degree of α. If P is a path in a tableau τ , then
d(P ) the degree of P is the sum of the degree of the signed propositions on P that are not reduced
on P .

Theorem 8. Every CST is finite.

Proof. While path extending, an entry could be split into two branches. whatever, the degree of
every path decrease for each reduction. So we have d(Pm+1) < d(Pm) where Pm+1 is an extension
of Pm.

With this Theorem, we do know something wrong if we run into a tableau which can never be
finished.

Exercises

1. Ex 4/ page 36

2. Ex 6/ page 36

3. Ex 9/ page 36

4. Prove the following tautology by tableau proof

(a) (q → r) → ((¬q → ¬p) → (p → r))

(b) ((p ∧ q) → r) ↔ (p → (q → r))

5. Prove of refute the following proposition.(If negative, find the counterexample)

(a) ((α → β) → (α → γ)) → (α → (β → γ))

(b) (α → β) → ((β → γ) → (α → γ))
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