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PeeDee Belemnite (VPDB) standard and for 15N 5
0.0‰ versus air nitrogen. The first anaylsis (sealed-
tube combustion with subsequent measurement on a
Finnigan MAT 251 mass spectrometer) has a repro-
ducibility of 6 0.08‰ for organic standards. The
second analysis [elemental analyzer–continuous-flow
isotope ratio mass spectrometry (EA/CFIRMS)] used a
Carlo Erba NC2500 interfaced through a Finnigan
CONFLO II to a Finnigan Delta XL mass spectrometer.
Reproducibility in this system averages 60.12‰ for
organic standards and homogenous natural samples.
The EA/CFIRMS analyses were calibrated as follows:
For each sample, d15N and d13C were measured
versus a pulse of 99.999% pure standard gas injected
into the mass spectrometer source immediately be-
fore or after the sample pulse eluted from the EA.
Because the isotope ratios obtained were dependent
on mixing ratios of carrier gas and dilutant in the
CONFLO, the ratios were normalized to a known
organic standard run with the samples under the
same conditions. To verify that the corrections were

normalized properly, each run also contained four
aliquots of a natural sample whose ratios were
known from sealed-tube combustion. This natural
sample had a precision identical to the organic stan-
dard (60.12‰) and the average of four determina-
tions was within a range of 60.1‰ of its correct
value. Each autosampler run contained seven organic
acid standards, four natural sample standards, and 40
samples and blanks. Blanks typically were less than
1% of the sample amount. Samples were prepared
for analysis by grinding, followed by weighing into
silver boats (measuring 5 mm by 9 mm) and acidifi-
cation with 20 ml of 50% HCl. After air drying
overnight at 50°C, the sample boats were sealed and
measured as follows: Isotope analyses were per-
formed by EA/CFIRMS, using a Carlo Erba NC2500
interfaced through a Finnigan CONFLO II to a Finni-
gan Delta XL mass spectrometer. Sample isotope
ratios were normalized in each run to the values
obtained for an organic standard with known iso-
tope ratios calibrated in sealed-tube combustions

versus NBS-19 for d13C 5 1.95‰ versus VPDB and
for d15N 5 0.0‰ versus air nitrogen. Precision in
this system averages 60.12‰ for organic stan-
dards and homogenous natural samples. Accuracy,
as measured by including repeats of a natural
sample of known isotopic ratio in each run, was
60.10‰. All isotope ratios are expressed in delta
notation, or parts per thousand deviation from
VPDB, where d13C 5 {[(13C/12C)sample/(13C/
12C)VPDB] 2 1} 3 1000.
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African Origin of Modern
Humans in East Asia: A Tale of

12,000 Y Chromosomes
Yuehai Ke,1* Bing Su,2,1,3* Xiufeng Song,1 Daru Lu,1

Lifeng Chen,1 Hongyu Li,1 Chunjian Qi,1 Sangkot Marzuki,4

Ranjan Deka,5 Peter Underhill,6 Chunjie Xiao,7 Mark Shriver,8

Jeff Lell,9 Douglas Wallace,9 R Spencer Wells,10

Mark Seielstad,11 Peter Oefner,6 Dingliang Zhu,12 Jianzhong Jin,1

Wei Huang,12,13 Ranajit Chakraborty,3 Zhu Chen,12,13 Li Jin1,3,13 †

To test the hypotheses of modern human origin in East Asia, we sampled 12,127
male individuals from 163 populations and typed for three Y chromosome
biallelic markers (YAP, M89, and M130). All the individuals carried a mutation
at one of the three sites. These three mutations (YAP1, M89T, and M130T)
coalesce to another mutation (M168T), which originated in Africa about 35,000
to 89,000 years ago. Therefore, the data do not support even a minimal in situ
hominid contribution in the origin of anatomically modern humans in East Asia.

The “Out-of-Africa” hypothesis suggests that
anatomically modern humans originated in
Africa about 100,000 years ago and then
spread outward and completely replaced local
archaic populations outside Africa (1, 2).
This proposition has been supported by ge-
netic evidence and archaeological findings
(3–9). The replacement in Europe was sup-
ported by recent ancient DNA analyses,
which ruled out the contribution of Neander-
thals to modern Europeans (10, 11). Howev-
er, it has been argued that the abundant hom-
inid fossils found in China and other regions
in East Asia (e.g., Peking man and Java man)
demonstrate continuity, not only in morpho-
logical characters but also in spatial and tem-
poral distributions (12–16). In this report, we
test the competing hypotheses of modern
Asian human origins using Y chromosome
polymorphisms.

We sampled 12,127 male individuals from
163 populations across Southeast Asia, Oce-
ania, East Asia, Siberia, and Central Asia and

typed for three Y chromosome biallelic markers
(YAP, M89, and M130) (17, 18) (Table 1).
Being a single-locus multiple-site (i.e., haplo-
type) system, the Y chromosome is one of the
most powerful molecular tools for tracing hu-
man evolutionary history (5, 9, 19–21). In pre-
vious Y chromosome studies, an extreme geo-
graphic structure was revealed in global popu-
lations in which the oldest clade represents
Africans and the younger ones represent some
Africans and all non-African populations (21).
One Y chromosome polymorphism (C to T
mutation) at the M168 locus is shared by all
non-African populations and was originally de-
rived from Africa on the basis of a study of
1062 globally representative male individuals
(21). The age of M168 was estimated at 44,000
years (95% confidence interval: 35,000 to
89,000 years), marking the recent Out-of-Africa
migrations (21). Under the M168T lineage,
there are three major derived sublineages de-
fined by polymorphisms at loci YAP (Alu in-
sertion) (5), M89 (C to T mutation), and M130

(C to T mutation, also called RPS4Y) (Fig. 1)
(21, 22). Therefore, these three markers can be
used to test the completeness of the replacement
of modern humans of African origin in East
Asia. An observation of a male individual not
carrying one of the three polymorphisms would
be indicative of a potential ancient origin and
could possibly lead to the rejection of such
completeness.

Each of the 12,127 samples typed carried
one of the three polymorphisms (YAP1,
M89T, or M130T) (Table 1). In other words,
they all fall into the lineage of M168T that was
originally derived from Africa. Hence, no an-
cient non-African Y chromosome was found in
the extant East Asian populations (P 5 5.4 3
1026 assuming a frequency of 1/1000 of local
contribution in the extant populations), suggest-
ing an absence of either an independent origin
or a 1,000,000-year shared global evolution.
This result indicates that modern humans of
African origin completely replaced earlier pop-
ulations in East Asia.
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It was argued that the extensive genetic data
supporting the Out-of-Africa hypothesis could
also be explained by the multiregional hypoth-
esis under a version of the trellis model (23).
This model suggests that a multiregional evo-
lutionary paradigm is shared across the human
range by frequent gene exchanges between con-
tinental populations since Homo erectus came
out of Africa about 1 million years ago (23). It
is difficult to test the trellis model with markers
from mitochondrial hypervariable region (D-
loop) and autosome because these markers
show frequent recurrent mutations and/or re-
combination (24, 25), respectively. However,
this can be circumvented by the application of a
large number of Y chromosome biallelic mark-
ers, which escape recombination and have a
low mutation rate. It has been shown that all the
Y chromosome haplotypes found outside Afri-
ca are younger than 35,000 to 89,000 years and
derived from Africa (21), although this estima-
tion is crude and depends on several assump-
tions. In addition, if extensive gene flow had
occurred between continental populations dur-
ing the past 1 million years but before the
divergence between Africans and non-Africans,
as suggested by the multiregionalists, the an-
cient Y chromosome haplotypes seen in Afri-
can populations or even much older haplotypes

would have been expected in East Asia, which
was not observed in our data. However, this
observation does not necessarily preclude the
possibility of selection sweep that could erase
archaic Y chromosomes of modern humans in
East Asia. On the other hand, a minor contri-
bution from a female lineage of local origin
cannot be excluded either, which should be
further studied with the use of mitochondrial
DNA (mtDNA) markers. Because the Y chro-
mosome has a relatively small effective pop-
ulation size, it is subject to stochastic process,
e.g., genetic drift, which could also lead to
extinction of archaic lineages. However, in
our study, with 163 populations from differ-
ent regions of Asia, it is hard to imagine that
all of the 163 populations should drift in the
same direction.

Inconsistency of age estimations for a com-
mon ancestor with the use of mitochondrial/Y
chromosome and autosome/X chromosome
markers, however, creates confusion. The age
estimated with the use of autosome/X chromo-
some genes ranges from 535,000 to 1,860,000
years (26–29), much older than those for
mtDNA and Y chromosome. However, this
difference in age estimation might only reflect
the difference in the effective population sizes
between Y chromosome/mtDNA and X chro-

mosome/autosome (three to four times as many
as the former) in the presence of bottleneck
events associated with the outbound migrations
from Africa, therefore disqualifying the utility
of the latter in distinguishing the competing
hypotheses (24, 30).
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Spermiogenesis Deficiency in
Mice Lacking the Trf2 Gene
Di Zhang,1 Tarja-Leena Penttila,3 Patricia L. Morris,2,3

Martin Teichmann,1 Robert G. Roeder1*

The discovery of TATA-binding protein–related factors (TRFs) has suggested
alternative mechanisms for gene-specific transcriptional regulation and raised
interest in their biological functions. In contrast to recent observations of an
embryonic lethal phenotype for TRF2 inactivation in Caenorhabditis elegans and
Xenopus laevis, we found that Trf2-deficient mice are viable. However, Trf 2 –/–

mice are sterile because of a severe defect in spermiogenesis. Postmeiotic round
spermatids advance at most to step 7 of differentiation but fail to progress to
the elongated form, and gene-specific transcription deficiencies were identified.
We speculate that mammals may have evolved more specialized TRF2 functions
in the testis that involve transcriptional regulation of genes essential for
spermiogenesis.

Early studies have suggested that one universal
TATA-binding protein (TBP) functions as a
central component of the general transcription
machineries to mediate transcription by nuclear
RNA polymerases I, II, and III in eukaryotes
(1). However, the identification of two TBP-
related factors (TRF1 and TRF2) raised the
possibility that TRFs may substitute for TBP in
mediating the transcription of specific genes
and thus have distinct biological functions (2–
5). In Drosophila, biochemical studies have
documented promoter-specific functions of
TRF1 (6, 7). In both Caenorhabditis elegans
and Xenopus laevis, inactivation of TRF2 re-
sults in embryonic lethality and deficiencies in
embryonic gene transcription (8–10). However,
except for the observation that TRF2 is abun-
dantly expressed in the testis of human and
mouse (4, 5), there has been no information
regarding biological functions of TRF2 in
mammalian species.

To elucidate the functional role of TRF2, we
used homologous recombination in embryonic
stem cells to generate mice lacking a functional
Trf2 gene (11). We constructed a targeting vec-
tor in which a region containing the central four
exons of Trf2 was replaced by a neomycin
resistance gene cassette (11). This deletion elim-
inates nearly 80% of the core region of TRF2.
Genotyping of 218 F2 offspring by polymerase

chain reaction analysis revealed a Trf21/1:
Trf21/2:Trf22/2 distribution (69:109:40) that
does not deviate significantly from the expected
Mendelian ratio, although there could be some
earlier lethality of homozygous embryos. Dis-
ruption of the Trf2 gene was confirmed by
Southern blot analysis (11). Subsequent North-
ern blot analyses of testis RNAs from Trf2
mutant mice showed reduced expression of full-
length Trf2 transcripts in heterozygotes and no
expression in homozygotes (11).

Mice deficient for the Trf2 gene appeared
to be healthy and showed no apparent abnor-
malities in major organs at the gross and histo-
logical levels. However, testes from the adult
Trf2-deficient mice showed size and weight
reductions of ;50% in comparison with those
from the wild-type and heterozygous controls
(11). When Trf2–/– male mice were mated with
Trf2 1/1 female mice, they copulated normal-
ly, as evidenced by the formation of vaginal
plugs in their mates, but none of the mated fe-
male mice became pregnant. In contrast, Trf2–/–

females were fertile and produced normal av-
erage litter sizes (7.3 6 1.8; n 5 10). Analyses
of serum testosterone levels in Trf2–/– male
mice revealed no statistically significant differ-
ence in comparison to their Trf21/1 or Trf21/–

littermates (11). We next evaluated semen sam-
ples extracted from the vas deferens and epidi-
dymis. The seminal fluid from Trf2–/– mice
lacked spermatozoa, whereas there were no ap-
parent differences in sperm number or morphol-
ogy between Trf2 1/1 and Trf2 1/– mice (11).

In the testis, male germ cells differentiate
from spermatogonia into spermatozoa by a

complex process referred to as “spermatogene-
sis.” The mouse spermatogenesis cycle is well
defined and can be subdivided into 12 stages,
with each stage consisting of a specific com-
plement of male germ cells. In determining the
nature of the sperm deficiency, we analyzed
male germ cell differentiation both in adult
mice and in juvenile mice between 8 and 35
days after birth. In the latter case, the first wave
of developing germ cells progresses through
spermatogenesis with specific mitotic and mei-
otic cells first appearing according to a well-
characterized developmental program (12). In-
spection of seminiferous tubules in the adult

1Laboratory of Biochemistry and Molecular Biology,
2The Rockefeller University, New York, NY 10021,
USA. 3Population Council, New York, NY 10021, USA.

*To whom correspondence should be addressed. E-
mail: roeder@rockvax.rockefeller.edu

Fig. 1. Trf 2 –/– mice show defects in spermiogen-
esis. (A and B) Histological analysis of testis sec-
tions from adult Trf 21/1 (A) and Trf 2 –/– (B)
littermates. Magnification, 3200. Arrows indicate
the elongated spermatids or spermatozoa that
are present in Trf 2 1/1 but absent in the Trf 2 –/–

testis. (C and D) Histological analysis of testis
sections from Trf 2 1/1 (C) and Trf 2 –/– (D) juve-
nile mice of 28 days of age. Magnification, 3200.
The arrow indicates the elongated spermatids
that are present in Trf 2 1/1 but absent in the
Trf 2 –/– testis. (E and F) Morphology of seminif-
erous tubules at stage VI from Trf 2 1/1 (E) and
Trf 2 –/– (F) juvenile mice of 25 days of age. Mag-
nification, 31000. Arrows indicate the acrosomes
of the spermatids, which are stained pink. The
acrosomal structures are abnormal in the Trf 2 –/–

section, as compared to the Trf 2 1/1 section.
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