Discrete Mathematics

Yi Li

Software School Fudan University

March 17, 2014

Review

- Introduction
- Tree
- König lemma

Outline

- Propositions
- Truth table
- Adequacy

Example

Example

Consider the following statements:

I am a student.

Example

- I am a student.
- I am not a student.

Example

- I am a student.
- I am not a student.
- I am a student and I study computer science.

Example

- I am a student.
- I am not a student.
- I am a student and I study computer science.
- I am a boy or I am a girl.

Example

- I am a student.
- I am not a student.
- I am a student and I study computer science.
- I am a boy or I am a girl.
- If I am a student, I have a class in a week.

Example

- I am a student.
- I am not a student.
- I am a student and I study computer science.
- I am a boy or I am a girl.
- If I am a student, I have a class in a week.
- I am student if and only if I am a member of some university.

We don't care about the following:

• Are you a student?

We don't care about the following:

- Are you a student?
- Sit down please.

We don't care about the following:

- Are you a student?
- Sit down please.
- What are you doing?

Connectives

A summary of connectives:

Symbols of propositional logic:

- Symbols of propositional logic:
 - **1** Connectives: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$

- Symbols of propositional logic:
 - **1** Connectives: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$
 - 2 Parentheses:), (

- Symbols of propositional logic:
 - **1** Connectives: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$
 - 2 Parentheses:), (
 - **3** Propositional Letters: $A, A_1, A_2, \dots, B, B_1, B_2, \dots$

- Symbols of propositional logic:
 - **1** Connectives: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$
 - Parentheses:), (
 - **3** Propositional Letters: $A, A_1, A_2, \dots, B, B_1, B_2, \dots$
- A propositional letter is the most elementary object.

Definition (Proposition)

Definition (Proposition)

Propositional letters are propositions.

Definition (Proposition)

- Propositional letters are propositions.
- ② if α and β are propositions, then $(\alpha \vee \beta), (\alpha \wedge \beta), (\neg \alpha), (\alpha \rightarrow \beta)$ and $(\alpha \leftrightarrow \beta)$ are propositions.

Definition (Proposition)

- Propositional letters are propositions.
- ② if α and β are propositions, then $(\alpha \vee \beta), (\alpha \wedge \beta), (\neg \alpha), (\alpha \to \beta)$ and $(\alpha \leftrightarrow \beta)$ are propositions.
- A string of symbols is a proposition if and only if it can be obtained by starting with propositional letters (1) and repeatedly applying (2).

Definition

The proposition constructed according to the definition of Proposition is *well-defined* or *well-formed*.

Definition

The proposition constructed according to the definition of Proposition is *well-defined* or *well-formed*.

Example

Check the following strings:

Definition

The proposition constructed according to the definition of Proposition is *well-defined* or *well-formed*.

Example

Check the following strings:

Definition

The proposition constructed according to the definition of Proposition is well-defined or well-formed.

Example

Check the following strings:

- \bullet $A \lor \neg, (A \land B)$

α	β	$\alpha \vee \beta$
T	Т	Т
T	F	Т
F	Т	Т
F	F	F

α	β	$\alpha \leftrightarrow \beta$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

α	β	$\alpha \wedge \beta$
Т	Т	Т
T	F	F
F	Т	F
F	F	F

α	$\neg \alpha$
Т	F
F	Т

α	β	$\alpha \to \beta$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Why do we let $\alpha \to \beta$ true when α is false?

Example

Consider the proposition, if n > 2, then $n^2 > 4$.

Why do we let $\alpha \to \beta$ true when α is false?

Example

Consider the proposition, if n > 2, then $n^2 > 4$.

Solution.

We first all know that the statement is correct. Let n = 3, 1, -3. Consider the truth of the statement:

Why do we let $\alpha \to \beta$ true when α is false?

Example

Consider the proposition, if n > 2, then $n^2 > 4$.

Solution.

We first all know that the statement is correct. Let n = 3, 1, -3. Consider the truth of the statement:

0 n=3, true and true.

Why do we let $\alpha \to \beta$ true when α is false?

Example

Consider the proposition, if n > 2, then $n^2 > 4$.

Solution.

We first all know that the statement is correct. Let n = 3, 1, -3. Consider the truth of the statement:

- 0 n=3, true and true.

Why do we let $\alpha \to \beta$ true when α is false?

Example

Consider the proposition, if n > 2, then $n^2 > 4$.

Solution.

We first all know that the statement is correct. Let n = 3, 1, -3. Consider the truth of the statement:

- 0 n=3, true and true.
- ② n = 1, false and false.
- n = -3, false and true.

Example

Figure out what would happen if man can fly like a bird!

Connectives

Definition (Truth functional)

An *n*-ary connective is *truth functional* if the truth value for $\sigma(A_1, \ldots, A_n)$ is uniquely determined by the truth value of A_1, \ldots, A_n .

Definition (Boolean function)

A k-place Boolean function is a function from $\{F, T\}^k$ to $\{T, F\}$. We let F and T themselves to be 0-place Boolean functions.

Definition (Boolean function)

A k-place Boolean function is a function from $\{F, T\}^k$ to $\{T, F\}$. We let F and T themselves to be 0-place Boolean functions.

Example

$\overline{x_1}$	<i>X</i> ₂	$x_1 \rightarrow x_2$	$f_{\rightarrow}(x_1,x_2)$
Т	Т	Т	$f_{\rightarrow}(T,T)=T$
Т	F	F	$f_{\rightarrow}(T,F)=F$
F	Τ	Т	$f_{\rightarrow}(F,T)=T$
F	F	Т	$f_{\rightarrow}(F,F)=T$

There are many connectives.

 \bullet 0-ary connectives: T and F.

There are many connectives.

- \bullet 0-ary connectives: T and F.
- ② Unary connectives: \neg , I, T and F.

Where $I_i(x_1, x_2, ..., x_n) = x_i$, which is a projection function of *i*-th parameter.

There are many connectives.

- \bullet 0-ary connectives: T and F.
- ② Unary connectives: \neg , I, T and F.
- Binary connectives: 10 of 16 are real binary functions.

Where $I_i(x_1, x_2, ..., x_n) = x_i$, which is a projection function of *i*-th parameter.

There are many connectives.

- \bullet 0-ary connectives: T and F.
- ② Unary connectives: \neg , I, T and F.
- Binary connectives: 10 of 16 are real binary functions.

Where $I_i(x_1, x_2, ..., x_n) = x_i$, which is a projection function of *i*-th parameter.

how many *n*-place Boolean functions are there?

For each n distinct letters, there are totally 2^{2^n} n-place booleann functions.

For each n distinct letters, there are totally 2^{2^n} n-place booleann functions.

Definition (Adequate connectives)

A set S of truth functional connectives is *adequate* if, given any truth function connective σ , we can find a proposition built up from the connectives is S with the same abbreviated truth table as σ .

Theorem (Adequacy)

 $\{\neg, \lor, \land\}$ is adequate(complete).

Theorem (Adequacy)

 $\{\neg, \lor, \land\}$ is adequate(complete).

Proof.

Construct the truth table of any connective

$$\sigma(A_1,\ldots,A_k)$$
.

Corollary

 $\{\neg, \vee\}$ is adequate.

Definition (DNF)

 α is called *disjunctive normal form* (abbreviated DNF). If α is a disjunction

$$\alpha = \gamma_1 \vee \cdots \vee \gamma_k,$$

where each γ_i is a conjunction

$$\gamma_i = \beta_{i1} \wedge \cdots \wedge \beta_{in_i}$$

and each β_{ij} is a proposition letter or the negation of a proposition letter.

Example

 $\alpha = (A_1 \land A_2 \land A_3) \lor (\neg B_1 \land B_2) \lor (\neg C_1 \land \neg C_2 \land \neg C_3)$ is a DNF.

Definition (CNF)

 α is called *conjunctive normal form* (abbreviated CNF). If α is a conjunction

$$\alpha = \gamma_1 \wedge \cdots \wedge \gamma_k,$$

where each γ_i is a disjunction

$$\gamma_i = \beta_{i1} \vee \cdots \vee \beta_{in_i}$$

and each β_{ij} is a proposition letter or the negation of a proposition letter.

Example

 $\alpha = (A_1 \lor A_2 \lor A_3) \land (\neg B_1 \lor B_2) \land (\neg C_1 \lor \neg C_2 \lor \neg C_3)$ is a CNF.

<u>Theorem</u>

Any proposition can be reformed as a DNF and a CNF.

How?

Theorem

Any proposition can be reformed as a DNF and a CNF.

How?

Proof.

According to adequacy theorem.

Next Class

- Formation tree
- Proposition parsing