Discrete Mathematics

Yi Li

Software School
Fudan University

March 17, 2014

Review

- Introduction
- Tree
- König lemma

Outline

- Propositions
- Truth table
- Adequacy

Sentences

Example

Consider the following statements:

Sentences

Example

Consider the following statements:
(1) I am a student.

Sentences

Example

Consider the following statements:
(1) I am a student.
(2) I am not a student.

Sentences

Example

Consider the following statements:
(1) I am a student.
(2) I am not a student.
(3) I am a student and I study computer science.

Sentences

Example

Consider the following statements:
(1) I am a student.
(2) I am not a student.
(3) I am a student and I study computer science.
(4) I am a boy or I am a girl.

Sentences

Example

Consider the following statements:
(1) I am a student.
(2) I am not a student.
(3) I am a student and I study computer science.
(4) I am a boy or I am a girl.
(5) If I am a student, I have a class in a week.

Sentences

Example

Consider the following statements:
(1) I am a student.
(2) I am not a student.
(3) I am a student and I study computer science.
(4) I am a boy or I am a girl.
(5) If I am a student, I have a class in a week.
(0) I am student if and only if I am a member of some university.

Sentences

We don't care about the following:

- Are you a student?

Sentences

We don't care about the following:

- Are you a student?
- Sit down please.

Sentences

We don't care about the following:

- Are you a student?
- Sit down please.
- What are you doing?

Connectives

A summary of connectives:
Symbol Verbose name Remark
\checkmark disjunction or
\wedge conjunction and
\neg negation not
\rightarrow conditional if ..., then ...
$\leftrightarrow \quad$ biconditional if and only if

Language

- Symbols of propositional logic:

Language

- Symbols of propositional logic:
(1) Connectives: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$

Language

- Symbols of propositional logic:
(1) Connectives: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$
(2) Parentheses:), (

Language

- Symbols of propositional logic:
(1) Connectives: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$
(2) Parentheses:), (
(3) Propositional Letters: $A, A_{1}, A_{2}, \cdots, B, B_{1}, B_{2}, \cdots$.

Language

- Symbols of propositional logic:
(1) Connectives: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$
(2) Parentheses:), (
(3) Propositional Letters: $A, A_{1}, A_{2}, \cdots, B, B_{1}, B_{2}, \cdots$.
- A propositional letter is the most elementary object.

Propositions

Definition (Proposition)

Propositions

Definition (Proposition)

(1) Propositional letters are propositions.

Propositions

Definition (Proposition)

(1) Propositional letters are propositions.
(2) if α and β are propositions, then $(\alpha \vee \beta),(\alpha \wedge \beta),(\neg \alpha),(\alpha \rightarrow \beta)$ and $(\alpha \leftrightarrow \beta)$ are propositions.

Propositions

Definition (Proposition)

(1) Propositional letters are propositions.
(2) if α and β are propositions, then $(\alpha \vee \beta),(\alpha \wedge \beta),(\neg \alpha),(\alpha \rightarrow \beta)$ and $(\alpha \leftrightarrow \beta)$ are propositions.
(3) A string of symbols is a proposition if and only if it can be obtained by starting with propositional letters (1) and repeatedly applying (2).

Propositions

Definition

The proposition constructed according to the definition of Proposition is well-defined or well-formed.

Propositions

Definition

The proposition constructed according to the definition of Proposition is well-defined or well-formed.

Example

Check the following strings:

Propositions

Definition

The proposition constructed according to the definition of Proposition is well-defined or well-formed.

Example

Check the following strings:
(1) $(A \vee B),((A \wedge B) \rightarrow C)$.

Propositions

Definition

The proposition constructed according to the definition of Proposition is well-defined or well-formed.

Example

Check the following strings:
(1) $(A \vee B),((A \wedge B) \rightarrow C)$.
(2) $A \vee \neg,(A \wedge B$

Truth Tables

α	β	$\alpha \vee \beta$
T	T	T
T	F	T
F	T	T
F	F	F
α	β	$\alpha \leftrightarrow \beta$
T	T	T
T	F	F
F	T	F
F	F	T

α	β	$\alpha \wedge \beta$
T	T	T
T	F	F
F	T	F
F	F	F

α	$\neg \alpha$
T	F
F	T

Truth Tables

α	β	$\alpha \rightarrow \beta$
T	T	T
T	F	F
F	T	T
F	F	T

Truth Tables

Why do we let $\alpha \rightarrow \beta$ true when α is false?

Example

Consider the proposition, if $n>2$, then $n^{2}>4$.

Truth Tables

Why do we let $\alpha \rightarrow \beta$ true when α is false?

Example

Consider the proposition, if $n>2$, then $n^{2}>4$.

Solution.

We first all know that the statement is correct. Let $n=3,1,-3$. Consider the truth of the statement:

Truth Tables

Why do we let $\alpha \rightarrow \beta$ true when α is false?

Example

Consider the proposition, if $n>2$, then $n^{2}>4$.

Solution.

We first all know that the statement is correct. Let $n=3,1,-3$. Consider the truth of the statement:
(1) $n=3$, true and true.

Truth Tables

Why do we let $\alpha \rightarrow \beta$ true when α is false?

Example

Consider the proposition, if $n>2$, then $n^{2}>4$.

Solution.

We first all know that the statement is correct. Let $n=3,1,-3$. Consider the truth of the statement:
(1) $n=3$, true and true.
(2) $n=1$, false and false.

Truth Tables

Why do we let $\alpha \rightarrow \beta$ true when α is false?

Example

Consider the proposition, if $n>2$, then $n^{2}>4$.

Solution.

We first all know that the statement is correct. Let $n=3,1,-3$. Consider the truth of the statement:
(1) $n=3$, true and true.
(2) $n=1$, false and false.
(3) $n=-3$, false and true.

Truth Tables

Example

Figure out what would happen if man can fly like a bird!

Connectives

Definition (Truth functional)

An n-ary connective is truth functional if the truth value for $\sigma\left(A_{1}, \ldots, A_{n}\right)$ is uniquely determined by the truth value of A_{1}, \ldots, A_{n}.

Connectives

Definition (Boolean function)

A k-place Boolean function is a function from $\{F, T\}^{k}$ to $\{T, F\}$. We let F and T themselves to be 0-place Boolean functions.

Connectives

Definition (Boolean function)

A k-place Boolean function is a function from $\{F, T\}^{k}$ to $\{T, F\}$. We let F and T themselves to be 0-place Boolean functions.

Example

x_{1}	x_{2}	$x_{1} \rightarrow x_{2}$	$f_{\rightarrow}\left(x_{1}, x_{2}\right)$
T	T	T	$f_{\rightarrow}(T, T)=T$
T	F	F	$f_{\rightarrow}(T, F)=F$
F	T	T	$f_{\rightarrow}(F, T)=T$
F	F	T	$f_{\rightarrow}(F, F)=T$

Connectives

There are many connectives.
(1) 0 -ary connectives: T and F.

Connectives

There are many connectives.
(1) 0-ary connectives: T and F.
(2) Unary connectives: \neg, I, T and F.

Where $I_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{i}$, which is a projection function of i-th parameter.

Connectives

There are many connectives.
(1) 0-ary connectives: T and F.
(2) Unary connectives: \neg, I, T and F.
(3) Binary connectives: 10 of 16 are real binary functions.
Where $I_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{i}$, which is a projection function of i-th parameter.

Connectives

There are many connectives.
(3) 0-ary connectives: T and F.
(2) Unary connectives: \neg, I, T and F.
(3) Binary connectives: 10 of 16 are real binary functions.
Where $I_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{i}$, which is a projection function of i-th parameter. how many n-place Boolean functions are there?

Adequacy

For each n distinct letters, there are totally $2^{2^{n}} n$-place booleann functions.

Adequacy

For each n distinct letters, there are totally $2^{2^{n}} n$-place booleann functions.

Definition (Adequate connectives)

A set S of truth functional connectives is adequate if, given any truth function connective σ, we can find a proposition built up from the connectives is S with the same abbreviated truth table as σ.

Adequacy

Theorem (Adequacy)

$\{\neg, \vee, \wedge\}$ is adequate(complete).

Adequacy

Theorem (Adequacy)

$\{\neg, \vee, \wedge\}$ is adequate(complete).

Proof.

Construct the truth table of any connective $\sigma\left(A_{1}, \ldots, A_{k}\right)$.

Adequacy

Corollary
 $\{\neg, \vee\}$ is adequate.

Normal Form

Definition (DNF)

α is called disjunctive normal form (abbreviated DNF). If α is a disjunction

$$
\alpha=\gamma_{1} \vee \cdots \vee \gamma_{k},
$$

where each γ_{i} is a conjunction

$$
\gamma_{i}=\beta_{i 1} \wedge \cdots \wedge \beta_{i n_{i}}
$$

and each $\beta_{i j}$ is a proposition letter or the negation of a proposition letter.

Normal Form

Example

$$
\alpha=\left(A_{1} \wedge A_{2} \wedge A_{3}\right) \vee\left(\neg B_{1} \wedge B_{2}\right) \vee\left(\neg C_{1} \wedge \neg C_{2} \wedge \neg C_{3}\right) \text { is }
$$ a DNF.

Normal Form

Definition (CNF)

α is called conjunctive normal form (abbreviated CNF). If α is a conjunction

$$
\alpha=\gamma_{1} \wedge \cdots \wedge \gamma_{k}
$$

where each γ_{i} is a disjunction

$$
\gamma_{i}=\beta_{i 1} \vee \cdots \vee \beta_{i n_{i}}
$$

and each $\beta_{i j}$ is a proposition letter or the negation of a proposition letter.

Normal Form

Example

$\alpha=\left(A_{1} \vee A_{2} \vee A_{3}\right) \wedge\left(\neg B_{1} \vee B_{2}\right) \wedge\left(\neg C_{1} \vee \neg C_{2} \vee \neg C_{3}\right)$ is a CNF.

Normal Form

Theorem

Any proposition can be reformed as a DNF and a CNF.

How?

Normal Form

Theorem

Any proposition can be reformed as a DNF and a CNF.

How?

Proof.

According to adequacy theorem.

Next Class

- Formation tree
- Proposition parsing

