Discrete Mathematics

Yi Li

Software School Fudan University

February 24, 2014

Yi Li (Fudan University)

Discrete Mathematics

February 24, 2014 1 / 15

Outline

- Review of partial order set
- Review of abstract algebra
- Lattice and Sublattice

Introduction

Intensively explored area

- By 1960s, 1,500 papers and books
 - By 1970s, 2,700 papers and books
- By 1980s, 3,200 papers and books
- By 1990s, 3,600 papers and books
- History
 - By 1850, George Boole's attempt to formalize proposition logic.
 - At the end of 19th century, Charles S. Pierce and Ernst Schröder
 - Independently, Richar Dedekind.
 - Until mid-1930's, Garrett Birkhoff developed general theory on lattice.

Partial order set(Poset)

Definition

Given a set A and a relation R on it, $\langle A, R \rangle$ is called a partially ordered set(**poset** in brief) if R is *reflexive*, *antisymmetric* and *transitive*.

Definition

Definition

Given a poset $< A, \leq >$, we can define:

• a is maximal if there does not exist $b \in A$ such that $a \leq b$.

Definition

- a is maximal if there does not exist $b \in A$ such that $a \leq b$.
- 2 a is minimal if there does not exist $b \in A$ such that $b \leq a$.

Definition

- a is maximal if there does not exist $b \in A$ such that $a \leq b$.
- 2 a is minimal if there does not exist $b \in A$ such that $b \leq a$.
- **(a)** a is greatest if for every $b \in A$, we have $b \leq a$.

Definition

- a is maximal if there does not exist $b \in A$ such that $a \leq b$.
- 2 a is minimal if there does not exist $b \in A$ such that $b \leq a$.
- **(a)** a is greatest if for every $b \in A$, we have $b \leq a$.
- *a* is least if for every $b \in A$, we have $a \leq b$.

Definition

Given a poset $\langle A, \leq \rangle$ and a set $S \subseteq A$.

Definition

Given a poset $< A, \leq >$ and a set $S \subseteq A$.

•
$$u \in A$$
 is a *upper bound* of S if $s \le u$ for every $s \in S$.

Definition

Given a poset $< A, \leq >$ and a set $S \subseteq A$.

- $u \in A$ is a *upper bound* of S if $s \le u$ for every $s \in S$.
- **2** $l \in A$ is a *lower bound* of S if $l \leq s$ for every $s \in S$.

Definition

Given a poset $\langle A, \leq \rangle$ and a set $S \subseteq A$.

Definition

Given a poset $\langle A, \leq \rangle$ and a set $S \subseteq A$.

• u is a *least upper bound* of S, (LUB(S)), if u is the upper bound of S and $u \le u'$ for any other upper bound u' of S.

Definition

Given a poset $< A, \leq >$ and a set $S \subseteq A$.

- u is a *least upper bound* of S, (LUB(S)), if u is the upper bound of S and $u \le u'$ for any other upper bound u' of S.
- I is a greatest lower bound of S, (GLB(S)), if l is the upper bound of S and l' ≤ l for any other lower bound l' of S.

Definition

Given a poset $\langle A, \leq \rangle$ and a set $S \subseteq A$.

- u is a *least upper bound* of S, (LUB(S)), if u is the upper bound of S and $u \le u'$ for any other upper bound u' of S.
- I is a greatest lower bound of S, (GLB(S)), if l is the upper bound of S and l' ≤ l for any other lower bound l' of S.

Theorem

A poset has at most one LUB or GLB.

Definition

A *lattice* (structure) is a poset $\langle A, \leq \rangle$ in which any two elements a, b have a LUB(a, b) and a GLB(a, b).

From now on, we define $a \cup b = LUB(a, b)$ and $a \cap b = GLB(a, b)$ in brief. We also call them join and meet respectively.

Representation Lattice

Representation Lattice

- Hasse diagram
- Joint/meet table

Property

The Lattice has the following properties:

Property

The Lattice has the following properties:

• Commutative: $a \cap b = b \cap a, a \cup b = b \cup a$.

Property

The Lattice has the following properties:

• Commutative: $a \cap b = b \cap a, a \cup b = b \cup a$.

Associative:

 $(a \cap b) \cap c = a \cap (b \cap c), (a \cup b) \cup c = a \cup (b \cup c).$

Property

The Lattice has the following properties:

• Commutative: $a \cap b = b \cap a, a \cup b = b \cup a$.

2 Associative: $(a \cap b) \cap c = a \cap (b \cap c), (a \cup b) \cup c = a \cup (b \cup c).$

3 Idempotent: $a \cap a = a, a \cup a = a$.

Property

The Lattice has the following properties:

• Commutative: $a \cap b = b \cap a, a \cup b = b \cup a$.

Associative: $(a \cap b) \cap c = a \cap (b \cap c), (a \cup b) \cup c = a \cup (b \cup c).$

- **Idempotent:** $a \cap a = a, a \cup a = a$.
- Absorption: $(a \cup b) \cap a = a, (a \cap b) \cup a = a$.

Definition

A semilattice is an algebra $\mathcal{S}=(S,*)$ satisfying, for all $x,y,z\in S$,

Definition

Yi Li (Fudan University)

A semilattice is an algebra $\mathcal{S} = (S, *)$ satisfying, for all $x, y, z \in S$, • x * x = x,

Discrete Mathematics

February 24, 2014

11 / 15

Definition

A semilattice is an algebra S = (S, *) satisfying, for all $x, y, z \in S$, 1 x * x = x, 2 x * y = y * x,

Definition

A semilattice is an algebra S = (S, *) satisfying, for all $x, y, z \in S$, • x * x = x, • x * y = y * x, • x * (y * z) = (x * y) * z.

Definition

A semilattice is an algebra S = (S, *) satisfying, for all $x, y, z \in S$, • x * x = x, • x * y = y * x, • x * (y * z) = (x * y) * z.

Property

A lattice could be divided into a join-semilattice and a meet-semilattice.

Definition

Given a algebra $\mathcal{L} = (L, \cap, \cup)$, it is a lattice if it subjects to:

Definition

Given a algebra $\mathcal{L} = (L, \cap, \cup)$, it is a lattice if it subjects to:

 $\label{eq:constraint} {\rm \textcircled{O}} \ (L,\cap) \ {\rm and} \ (L,\cap) \ {\rm are \ two \ semilattices}.$

Definition

Given a algebra $\mathcal{L} = (L, \cap, \cup)$, it is a lattice if it subjects to:

● (L, \cap) and (L, \cap) are two semilattices.

$$(a \cup b) \cap a = a, (a \cap b) \cup a = a.$$

Definition

Given a algebra $\mathcal{L} = (L, \cap, \cup)$, it is a lattice if it subjects to:

Theorem

If L is any set in which there are two operation defined as \cup and \cap satisfying the last four properties, then L is a lattice.

Sublattice and extension

Definition

A subset S of a lattice L is called sublattice if it is closed under the operation \cup and \cap .

Sublattice and extension

Definition

A subset S of a lattice L is called sublattice if it is closed under the operation \cup and \cap .

Definition

If S is a sublattice of L, L is an extension of S.

Sublattice and extension

Definition

A subset S of a lattice L is called sublattice if it is closed under the operation \cup and \cap .

Definition

If S is a sublattice of L, L is an extension of S.

Definition

The subset S of the lattice L is called *convex* if $a, b \in S, c \in L$, and $a \le c \le b$ imply that $c \in S$.

Sublattice

Theorem

Given two lattice L and L', a bijection $f : L \to L'$ from L to L' is an isomorphism if and only if $a \leq b$ in L implies $f(a) \leq f(b)$ in L'.

Next Class

- Special lattices
- Boolean algebra