Discrete Mathematics

Yi Li

Software School Fudan University

April 9, 2013

Yi Li (Fudan University)

Review

- Truth assignment
- Truth valuation
- Tautology
- Consequence

Outline

• Tableau proof system

Terminologies

- signed proposition
- entries of the tableau
- atomic tableau

Tableau

Definition (Tableaux)

A *finite tableau* is a binary tree, labeled with signed propositions called entries, such that:

- All atomic tableaux are finite tableaux.
- If τ is a finite tableau, P a path on τ, E an entry of τ occurring on P and τ' is obtained from τ by adjoining the unique atomic tableau with root entry E to τ at the end of the path P, then τ' is also a finite tableau.

If $\tau_0, \tau_1, \ldots, \tau_n, \ldots$ is a (finite or infinite) sequence of the finite tableaux such that, for each $n \ge 0, \tau_{n+1}$ is constructed from τ_n by an application of (2), then $\tau = \cup \tau_n$ is a *tableau*.

Tableau

Example

A tableau with the signed proposition $F(((\alpha \rightarrow \beta) \lor (\gamma \lor \delta)) \land (\alpha \lor \beta)).$

Tableau

Definition

Let τ be a tableau, P a path on τ and E an entry occurring on P.

- *E* has been *reduced* on *P* if all the entries on one path through the atomic tableau with root *E* occur on *P*.
- P is contradictory if, for some proposition α, Tα and Fα are both entries on P. P is finished if it is contradictory or every entry on P is reduced on P.
- **③** τ is *finished* if every path through τ is finished.
- τ is contradictory if every path through τ is contradictory.

Proof

Definition

- A tableau proof of a proposition α is a contradictory tableau with root entry Fα. A proposition is tableau provable, written ⊢ α, if it has a tableau proof.
- Solution A tableau refutation for a proposition α is a contradictory tableau starting with $T\alpha$. A proposition is tableau refutable if it has a tableau refutation.

Definition (Complete systematic tableaux)

Let R be a signed proposition. We define the *complete systematic* tableau(CST) with root entry R by induction.

- Let τ_0 be the unique atomic tableau with R at its root.
- 2 Assume that τ_m has been defined. Let *n* be the smallest level of τ_m and let *E* be the leftmost such entry of level *n*.
- S Let τ_{m+1} be the tableau gotten by adjoining the unique atomic tableau with root E to the end of every noncontradictory path of τ_m on which E is unreduced.

The union of the sequence τ_m is our desired complete systematic tableau.

Theorem

Every CST is finished.

Proof.

Reduce the *E* level by level and there is no *E* unreduced for any fixed level. \Box

Theorem

If $\tau = \bigcup \tau_n$ is a contradictory tableau, then for some m, τ_m is a finite contradictory tableau. Thus, in particular, if a CST is a proof, it is a finite tableau.

Proof.

By König lemma.

Definition

We define $d(\alpha)$, the degree of a proposition α by induction.

- if α is a propositional letter, then $d(\alpha) = 0$.
- 2) if α is $\neg \beta$, then $d(\alpha) = d(\beta) + 1$.

The degree of a signed proposition $T\alpha$ or $F\alpha$ is the degree of α . If P is a path in a tableau τ , then d(P) the degree of P is the sum of the degree of the signed propositions on P that are not reduced on P.

Theorem

Every CST is finite.

Proof.

Every path is finite with $d(P_{m+1}) < d(P_m)$.

Next Class

- Soundness theorem
- Completeness theorem