Discrete Mathematics

Yi Li

Software School Fudan University

April 2, 2013

Review

- Formation tree
- Parsing algorithm

Outline

- Truth assignment
- Truth valuation
- Tautology
- Consequence

Truth Assignment

How we discuss the truth of propositional letters?

Definition (Assignment)

A truth assignment A is a function that assigns to each **propositional letter** A a unique truth value $A(A) \in \{T, F\}$.

Truth Valuation

How we discuss the truth of propositions?

Example

Truth assignment of α and β and valuation of $(\alpha \vee \beta)$.

α	β	$(\alpha \vee \beta)$
Т	Т	T
Т	F	Т
F	Т	Т
F	F	F

Assignment and Valuation

Definition (Valuation)

A truth valuation \mathcal{V} is a function that assigns to each **proposition** α a unique truth value $\mathcal{V}(\alpha)$ so that its value on a compund proposition is determined in accordance with the appropriate truth tables.

Specially, $V(\alpha)$ determines one possible *truth assignment* if α is a propositional letter.

Assignment and Valuation

Theorem

Given a truth assignment A there is a unique truth valuation V such that $V(\alpha) = A(\alpha)$ for every propositional letter α .

Proof.

The proof can be divided into two step.

- Construct a V from A by induction on the depth of the associated formation tree.
- ② Prove the uniqueness of $\mathcal V$ with the same $\mathcal A$ by induction bottom-up.

Assignment and Valuation

Corollary

If V_1 and V_2 are two valuations that agree on the support of α , the finite set of propositional letters used in the construction of the proposition of the proposition α , then $V_1(\alpha) = V_2(\alpha)$.

Tautology

Definition

A proposition σ of propostional logic is said to be *valid* if for any valuation $\mathcal{V}, \mathcal{V}(\sigma) = T$. Such a proposition is also called a *tautology*.

Tautology

Example

 $\alpha \vee \neg \alpha$ is a tautology.

Solution:

α	$\neg \alpha$	$\alpha \vee \neg \alpha$	
Т	F	Т	
F	Т	Т	

Logical Equivenlence

Definition

Two proposition α and β such that, for every valuation $\mathcal{V}, \mathcal{V}(\alpha) = \mathcal{V}(\beta)$ are called *logically equivalent*. We denote this by $\alpha \equiv \beta$.

Logical Equivenlence(Cont.)

Example

$$\alpha \to \beta \equiv \neg \alpha \lor \beta$$
.

Proof.

Prove by truth table.

α	β	$\alpha \to \beta$	
Т	Т	Т	
Т	F	F	
F	Т	Т	
F	F	Т	

α	β	$\neg \alpha$	$\neg \alpha \lor \beta$
Т	Т	F	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

Consequence

Definition

Let Σ be a (possibly infinite) set of propositions. We say that σ is a *consequence* of Σ (and write as $\Sigma \models \sigma$) if, for any valuation \mathcal{V} ,

$$(\mathcal{V}(\tau) = T \text{ for all } \tau \in \Sigma) \Rightarrow \mathcal{V}(\sigma) = T.$$

Consequence

Example

- **1** Let $\Sigma = \{A, \neg A \lor B\}$, we have $\Sigma \models B$.
- ② Let $\Sigma = \{A, \neg A \lor B, C\}$, we have $\Sigma \models B$.
- **3** Let $\Sigma = {\neg A \lor B}$, we have $\Sigma \not\models B$.

Model

Definition

We say that a valuation \mathcal{V} is a *model* of Σ if $\mathcal{V}(\sigma) = T$ for every $\sigma \in \Sigma$. We denote by $\mathcal{M}(\Sigma)$ the set of all models of Σ .

Model

Example

Let $\Sigma = \{A, \neg A \lor B\}$, we have models:

- Let A(A) = T, A(B) = T
- 2 Let A(A) = T, A(B) = T, A(C) = T.
- Let $\mathcal{A}(A) = T, \mathcal{A}(B) = T, \mathcal{A}(C) = F, \mathcal{A}(D) = F, \ldots$

Model

Definition

We say that propositions Σ is *satisfiable* if it has some model. Otherwise it is called *unsatisfiable*. To a proposition, it is called *invalid*.

Properties

Proposition

Let $\Sigma, \Sigma_1, \Sigma_2$ be sets of propositions. Let $Cn(\Sigma)$ denote the set of consequence of Σ and Taut the set of tautologies.

Deduction Theorem

Theorem

For any propositions φ, ψ , $\Sigma \cup \{\psi\} \models \varphi \Leftrightarrow \Sigma \models \psi \to \varphi$ holds.

Proof.

Prove by the definition of consequence.

When we consider \Rightarrow , \mathcal{V} which satisfy Σ are divided into two parts, $\mathcal{V}_1(\psi) = T$ and $\mathcal{V}_2(\psi) = F$. Then we investigate whether \mathcal{V} satisfies $\psi \to \varphi$.

Conversely, ${\cal V}$ which makes ψ false are discarded.

Because they are not taken into consideration to satisfy $\Sigma \cup \{\psi\}$.

Next Class

Tableau proof system