Discrete Mathematics

Yi Li

Software School Fudan University

May 28, 2013

Review

- Semantics: Meaning and Truth
- Structure
- Relation between Predicate Logic and Propositional Logic
- Some Application

Outline

- Atomic tableaux
- Tableau proof
- Property of CST

Tableaux

- Signed sentence
- Entries of a tableaux
- How to deal with quantifiers?

Truth |

Definition (Truth)

The *truth* of a sentence φ of \mathcal{L} in a structure \mathcal{A} in which every $a \in A$ is named by a ground term of \mathcal{L} is defined by induction.

Truth

Definition (Truth)

The *truth* of a sentence φ of \mathcal{L} in a structure \mathcal{A} in which every $a \in A$ is named by a ground term of \mathcal{L} is defined by induction.

 \bigcirc $\mathcal{A} \models \exists v \varphi(v) \Leftrightarrow$ for some ground term t, $\mathcal{A} \models \varphi(t)$.

Truth

Definition (Truth)

The *truth* of a sentence φ of \mathcal{L} in a structure \mathcal{A} in which every $a \in A$ is named by a ground term of \mathcal{L} is defined by induction.

- **1** $\mathcal{A} \models \forall v \varphi(v) \Leftrightarrow \text{ for all ground term } t, \mathcal{A} \models \varphi(t).$

Quantifiers: Atomic Tableaux

$$\mathcal{A} \models \exists v \varphi(v) \Leftrightarrow \text{for some ground term } t, \mathcal{A} \models \varphi(t).$$

$$T(\exists x)\varphi(x)$$

 $T\varphi(c)$ for a new constant c

Quantifiers: Atomic Tableaux

$$\mathcal{A} \models \forall v \varphi(v) \Leftrightarrow \text{for all ground term } t, \mathcal{A} \models \varphi(t).$$

$$T(\forall x)\varphi(x)$$

 $T \varphi(t)$ for any ground term t of $\mathcal{L}_{\mathcal{C}}$

Quantifiers: Atomic Tableaux

$$F(\forall x)\varphi(x)$$

$$F(\exists x)\varphi(x)$$

$$F\varphi(c)$$
 for a new constant c

$$Farphi(t)$$
 for any ground term t of $\mathcal{L}_{\mathcal{C}}$

We define tableaux as binary trees labeled with signed sentence(of $\mathcal{L}_{\mathcal{C}}$) called entries by induction. Base step:

• All atomic tableaux are tableaux.

We define tableaux as binary trees labeled with signed sentence(of $\mathcal{L}_{\mathcal{C}}$) called entries by induction. Base step:

- All atomic tableaux are tableaux.
- In cases 7b and 8a, c is new simply means that c is one of the constants c_i added on to \mathcal{L} to get $\mathcal{L}_{\mathcal{C}}$ (which therefore does not appear in φ).

Induction step:

if τ is a finite tableau, P a path on τ , E and entry of τ occurring on P.

• τ \prime is obtained from τ by adjoining an atomic tableau with root entry E to τ at the end of the path P, then τ \prime is also a tableau.

Induction step:

if τ is a finite tableau, P a path on τ , E and entry of τ occurring on P.

- τ \prime is obtained from τ by adjoining an atomic tableau with root entry E to τ at the end of the path P, then τ \prime is also a tableau.
- Here the requirement that c be new in Case 7b and 8a means that it is one of the c_i that do not appear in any entries on P.

Induction step:

if τ is a finite tableau, P a path on τ , E and entry of τ occurring on P.

- τ \prime is obtained from τ by adjoining an atomic tableau with root entry E to τ at the end of the path P, then τ \prime is also a tableau.
- Here the requirement that c be new in Case 7b and 8a means that it is one of the c_i that do not appear in any entries on P.
- In actual practice it is simpler in terms of bookkeeping to choose one not appearing at any nod of τ .

If we have

• τ_0 is a finite tableau.

 $\tau = \cup \tau_n$ is also a tableau.

If we have

- \bullet τ_0 is a finite tableau.
- ② $\tau_0, \tau_1, \ldots, \tau_n, \ldots$ is a sequence of tableaux such that, for every $n \geq 0, \tau_{n+1}$ is constructed from τ_n by an application of induction step,

 $\tau = \cup \tau_n$ is also a tableau.

Tableaux from S: definition

The definition for tableaux from S is the same as for ordinary tableaux except that we include an additional formation rule:

If τ is a finite tableau from S, φ a sentence from S, P a path on τ and $\tau\prime$ is obtained from τ by adjoining $T\varphi$ to the end of the path P, then $\tau\prime$ is also a tableau from S.

Tableau Proof

Definition

Tableau proofs (from S): Let τ be a tableau and P a path in τ .

Tableau Proof

Definition

Tableau proofs (from S): Let τ be a tableau and P a path in τ .

• P is contradictory if, for some sentence α , $T\alpha$ and $F\alpha$ both appear as labels of nodes of P.

Tableau Proof

Definition

Tableau proofs (from S): Let τ be a tableau and P a path in τ .

- **1** P is contradictory if, for some sentence α , $T\alpha$ and $F\alpha$ both appear as labels of nodes of P.
- $oldsymbol{\circ}$ au is contradictory if every path on au is contradictory.

Tableau Proof(Cont.)

Definition

Tableau Proof(Cont.)

Definition

3 τ is a proof of α (from S) if τ is a finite contradictory tableau (from S) with its root node labeled $F\alpha$. If there is proof τ of α (from S), we say α is provable (from S) and write $\vdash \alpha$ ($S \vdash \alpha$).

Tableau Proof(Cont.)

Definition

- ② τ is a proof of α (from S) if τ is a finite contradictory tableau (from S) with its root node labeled $F\alpha$. If there is proof τ of α (from S), we say α is provable (from S) and write $\vdash \alpha$ (S $\vdash \alpha$).
- **9** S is *inconsistent* if there is a proof of $\alpha \wedge \neg \alpha$ from S for some sentence α .

Tableau proof(Cont.)

Example

Check the formula $((\forall x)\varphi(x) \to (\exists x)\varphi(x))$.

Tableau proof(Cont.)

Example

Check the formula $((\forall x)\varphi(x) \to (\exists x)\varphi(x))$.

Example

Check the formula

$$(\forall x)(P(x) \rightarrow Q(x)) \rightarrow ((\forall x)P(x) \rightarrow (\forall x)Q(x))$$

Tableau proof(Cont.)

Example

Check the formula $((\forall x)\varphi(x) \to (\exists x)\varphi(x))$.

Example

Check the formula

$$(\forall x)(P(x) \rightarrow Q(x)) \rightarrow ((\forall x)P(x) \rightarrow (\forall x)Q(x))$$

Example

Check the statement

$$(\psi(x) \to (\exists x)\varphi(x)) \Rightarrow (\exists x)(\psi(x) \to \varphi(x))$$

Tableau(Cont.)

Definition

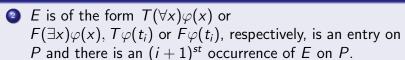
Let $\tau = \cup \tau_n$ be a tableau (from S), P a path in τ , E an entry on P and ω the i^{th} occurrence of E on P (i.e., the i^{th} node on P labeled with E).

- ω is reduced on P if
 - ① E is neither of the form $T(\forall x)\varphi(x)$ nor $F(\exists x)\varphi(x)$ and , for some j, τ_{j+1} is gotten from τ_j by an application Rule (ii) of Definition 1 to E and a path on τ_j which is an initial segment of P. (In this case, we say that E occurs on P as the root entry of an atomic tableau.)

Tableau(Cont.)

Definition

or



Tableau(Cont.)

Definition

• τ is *finished* if every occurrence of every entry on τ is reduced on every noncontradictory path containing it (and $T\varphi$ appears on every noncontradictory path of τ for every φ in S). It is unfinished otherwise.

Complete Systematic Tableau(Cont.)

Definition

Suppose T is a tree with a left-right ordering on the nodes at each of its levels. Recall that if T is, for example, a tree of binary sequence, the left-right ordering is given by the usual lexicographic ordering. We define the *level-lexicographic ordering* on \leq_{LL} on the nodes ν, μ of T as follows:

 $\nu \leq_{LL} \Leftrightarrow$ the level of ν in T is less than that of μ or ν and μ are on the same level of T and ν is to the left of μ .

Complete Systematic Tableau

Definition

We construct the CST, the *complete systematic tableau*, with any given signed sentence as the label of its root, by induction.

• We begin with τ_0 an atomic tableau with root the given signed sentence. This atomic tableau is uniquely specified by requiring that in Cases 7a and 8b we use the term t_i and that in Cases 7b and 8a we use c_i for the least allowable i.

Complete Systematic Tableau(Cont.)

Definition

2 If E is not of the form $T(\forall x)\varphi(x)$ or $F(\exists x)\varphi(x)$, we adjoin the atomic tableau with apex E to the end of every noncontradictory path in τ that contains ω . For E of the form $T(\exists x)\varphi(x)$ or $F(\forall x)\varphi(x)$, we use the least constant c_j not yet appearing in the tableau.

Complete Systematic Tableau(Cont.)

Definition

3 If E is of the form $T(\forall x)\varphi(x)$ or $F(\exists x)\varphi(x)$ and ω is the i^{th} occurrence of E on P we adjoin

$$T\varphi(t_i)$$
 $F\varphi(t_i)$

respectively, to the end of every noncontradictory path in τ containing ω .

Property of CST

Proposition

Every CST is finished.

Next Class

- Soundness
- Completeness