Discrete Mathematics

Yi Li

Software School Fudan University

March 5, 2013

Yi Li (Fudan University)

Review

- Review of a partial order set
- Review of abstract algebra
- Lattice and Sublattice

Outline

- Special Lattices
- Boolean Algebra

Definition (Ring)

Given a ring R and a nonempty set $I \subseteq R$. I is an *ideal* of R if it subjects to:

• For any
$$a, b \in I, a - b \in I$$
.

2 For any
$$a \in I, r \in R, ar, ra \in I$$
.

Definition (Lattice)

A subset I of a lattice L is an *ideal* if it is a sublattice of L and $x \in I$ and $a \in L$ imply that $x \cap a \in I$. A proper ideal I of L is *prime* if $a, b \in L$ and $a \cap b \in I$ imply that $a \in I$ or $b \in I$.

Example

Given a lattice and sublattice P and I as shown in the following Figure, where $P = \{a, 0\}$ and $I = \{0\}$.

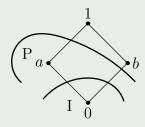


Figure : Ideal and prime ideal

Yi Li (Fudan University)

Discrete Mathematics

Definition

- The ideal generated by a subset H will be denoted by id(H), and if $H = \{a\}$, we write id(a) for id(a); we shall call id(a) a principal ideal.
- **2** For an order P, a subset $A \subseteq P$ is called *down-set* if $x \in A$ and $y \leq x$ imply that $y \in A$.

Theorem

Let L be a lattice and let H and I be nonempty subsets of L.

 I is an ideal if and only if the following two conditions hold:

I is a down-set.

I = id(H) if and only if
$$I = \{x | x ≤ h_0 \cup \cdots \cup h_{n-1} \text{ for some } n ≥ 1 \text{ and } h_0, \ldots, h_{n-1} ∈ H\}.$$

$$Tor a \in L, id(a) = \{x \cap a | x \in L\}.$$

Definition

A lattice L is complete if any(finte or infinite) subset $A = \{a_i | i \in I\}$ has a least upper bound $\bigcup_{i \in I} a_i$ and a greatest lower bound $\bigcap_{i \in I} a_i$.

Definition

A lattice L is bounded if it has a greatest element 1 and a least element 0.

Theorem

Finite lattice
$$L = \{a_1, \ldots, a_n\}$$
 is bounded.

Definition

A lattice L with 0 and 1 is said to be complemented if for every $a \in L$ there exists an a' such that $a \cup a' = 1$ and $a \cap a' = 0$.

Sometimes, we can relax the restrictions by defining complement of b relative to a as $b \cup b_1 = a, b \cap b_1 = 0$ if $b, b_1 \leq a$.

Example

 $< \mathcal{P}(S), \subseteq >$ is complemented for any nonempty set S.

Example

Given a poset $\langle \{0, a, b, c, 1\}, R \rangle$ described in following figure.

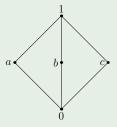


Figure : Complemented Lattice.

Yi Li (Fudan University)

Definition

A lattice L is distributive if for any $a,b,c\in L$ such that:

a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c).
 a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c).

If a lattice is not distributive, we call it non-distributive.

Example

 $< \mathcal{P}(S), \subseteq >$ is distributive for any nonempty set S.

Definition

A Boolean algebra is a lattice with 0 and 1 that is distributive and complemented.

Example

 $\langle \mathcal{P}(A), \subseteq \rangle$ is a Boolean algebra. Specially $A = \{a, b\}$.

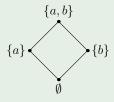


Figure :
$$\mathcal{P}(A)$$
, where $A = \{a, b\}$.

Yi Li (Fudan University)

Discrete Mathematics

Example

 $< \{1, 2, 3, 6\}, | >$ is a Boolean algebra.

First, we can verify that it is distributive and complemented. We can prove that $<\{1, 2, 3, 6\}, | >$ is isomorphic to $< \mathcal{P}(\{a, b\}), \subseteq >$. We know the mapping keep the properties of operations

 \cap, \cup . So $< \{1, 2, 3, 6\}, | >$ is also a Boolean algebra.

Theorem (**Stone**'s Representation Theorem, 1936)

Every finite Boolean algebra is isomorphic to the Boolean algebra of subsets of some finite set S.

Corollary

Every finite Boolean algebra has 2^n elements for some n.

Theorem

The complement a' of any element a of a Boolean algebra B is uniquely determined. The mapping ' is a one-to-one mapping of B onto itself. It satisfies the conditions.

$$(a \cup b)' = a' \cap b', \quad (a \cap b)' = a' \cup b'$$

Definition

A ring is called *Boolean* if all of its elements are idempotent.

Theorem

Boolean algebra is equivallent to Boolean ring with identity.

- Define $a + b = (a \cap b') \cup (a' \cap b)$ (symmetric difference of a and b) and $a \cdot b = a \cap b$.
- Onversely, define a ∪ b = a + b − ab and a ∩ b = ab given a ring.

Next Class

- Introduction to logic
- Some represented concepts