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Consequence

.
Definition..

......

Let Σ be a (possibly infinite) set of propositions. We say
that σ is a consequence of Σ (and write as Σ |= σ) if,
for any valuation V ,

(V(τ) = T for all τ ∈ Σ) ⇒ V(σ) = T .
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Consequence

.
Example
..

......

...1 Let Σ = {A,¬A ∨ B}, we have Σ |= B .

...2 Let Σ = {A,A → B}, we have Σ |= B .

...3 Let Σ = {¬A}, we have Σ |= (A → B).
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Deductions from Premises

How to construct CST from premises?

.
Definition (Tableaux from premises)
..

......

Let Σ be (possibly infinite) set of propositions. We define
the finite tableaux with premises from Σ by induction:

...2 If τ is a finite tableau from Σ and α ∈ Σ, then the
tableau formed by putting Tα at the end of every
noncontradictory path not containing it is also a
finite tableau from Σ.
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Tableau proof

.
Definition..

......

A tableau proof of a proposition α from Σ is a tableau
from Σ with root entry Fα that is contradictory, that is,
one in which every path is contradictory. If there is such
a proof we say that α is provable from Σ and write it as
Σ ⊢ α.
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Property of CST

.
Theorem..
......Every CST from a set of premises is finished.
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Soundness of deductions from premises

.
Theorem..

......

If there is a tableau proof of α from a set of premises Σ,
then α is a consequence of Σ, i.e. Σ ⊢ α ⇒ Σ ⊨ α.
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Completeness of deduction from premises

.
Theorem..

......

If α is consequence of a set Σ of premises, then there is
a tableau deduction of α from Σ, i.e., Σ ⊨ α ⇒ Σ ⊢ α.
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Finite proof

.
Theorem..

......

If τ = ∪τn is a contradictory tableau from Σ, then for
some m, τm is a finite contradictory tableau from Σ. In
particular, if a CST from Σ is a proof, it is finite.
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Compactness

.
Theorem..

......
α is a consequence of Σ if and only if α is a consequence
of some finite subset of Σ.

.
Definition..

......

A set Σ of propositions is called satisfiable if it has a
model, i.e., there is a valuation V such that V(α) = T
for every α ∈ Σ. We also say that such a valuation
satisfies Σ.
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Compactness

.
Theorem (Compactness)
..

......

Let Σ = {αi |i ∈ ω} be an infinite set of a propositions.
Σ is satisfiable if and only if every finite subset Γ of Σ is
satisfiable.
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Model check: problem
.
Example
..

......

There are three suspects A, B, and C who are associated
with a murder case. The police officer queried them and
have their statements:

A: I didn’t kill the victim, he is a friend of B and C
hates him.

B: I didn’t do it. Even I don’t know him. And I am
not present.

C: I didn’t do it. I saw A and B stayed with the
victim in that day. The murder must be one of
them.

Our question is who the suspect is?
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Model check: solution

We can assume that the murder would lie to cover his
action. So we want check the truth of statements. So
we have:

...1 A: A killed victim.

...2 BKV : B knows the victim.

...3 AP : A is present.

...4 CHV : C hates the victim.

...5 (A ∧ ¬B) ∨ (¬A ∧ B): murder is either A or B.
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Model check: solution

Now we can represent the satement of each sucpects as
following:

...1 A: ¬A ∧ BKV ∧ CHV .

...2 B: ¬B ∧ ¬BKV ∧ ¬BP .

...3 C: ¬C ∧ AP ∧ BP ∧ ((A ∧ ¬B) ∨ (¬A ∧ B)).

It is easy to find the maximal satisfiable set of
propositions.
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Digital design

.
Example
..

......

Consider the circuit for the following propositions:
...1 (A1 ∧ A2) ∨ (¬A3))
...2 (A ∧ B ∧ D) ∨ (A ∧ B ∧ ¬C )
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Digital design

.
Example
..

......

Consider the boolean function majority of {A,B ,C}. It
means that the value of function depends on the
majority of input.

We can use a proposition to represent majority function:

m(A,B ,C ) = (A ∧ B ∧ C ) ∨ (A ∧ B ∧ ¬C )
∨ (A ∧ ¬B ∧ C ) ∨ (¬A ∧ B ∧ C )

= (B ∧ C ) ∨ (A ∧ C ) ∨ (A ∧ B)

= (A ∧ (B ∨ C )) ∨ (B ∧ C )
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Application of proposition logic

.
Example
..

......

Consider the pigeonhole principle:
f : n+ → n,∃i , j , f (i) = f (j), where 0 ≤ i < j ≤ n.
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Application of proposition logic

Solution: let pij means f (i) = j . Then we can describe
everywhere defined property as

α1 = ∧0≤i≤n ∨0≤j<n pij

and we can describe single value as

α2 = ∧0≤i≤n ∧0≤j ̸=k<n ¬(pij ∧ pik)

Now we can describe pigeonhole principle as

φ = (α1 ∧ α2) ∧ ∨0≤i<j≤n ∨0≤k<n (pik ∧ pjk)
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Application of compactness theorem

.
Example
..

......

Given an infinite planar graph. If its every finite subgraph
is k-colorable, then the graph itself is also k-colorable.
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Application of compactness theorem

Solution: Let pa,i represent vertex a is colored with i .
We can formulate a graph which is k-colorable with the
following propositions.

...1 pa,1 ∨ pa,2 ∨ · · · ∨ pa,k , for every a ∈ V . It means
every vertex could be colored with at least one of k
colors.

...2 ¬(pa,i ∧ pa,j), 1 ≤ i < j ≤ k for all a ∈ V . It means
Ci ∩ Cj = ∅.

...3 ¬(pa,i ∧ pb,i), i = 1, . . . , k for all aEb. It means no
neighbors have the same color .
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Application of compactness theorem

.
Example
..
......Every set S can be (totally) ordered.
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Application of compactness theorem

.
Theorem..
......An infinite tree with finite branch has an infinite path.

.
Proof...
......Read lecture note.
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Next Class

Middle Term Examination, 1:30 - 3:30, May 5.

Predicate Logic, May 7
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