Fudan University

复旦大学

2011－2012学年第2学期考试试卷

课程名称：离散数学（II）
开课院系：软件学院
姓名： \qquad

课程代码：SOFT130040．01
考试形式：开卷
专业： \qquad

题目	1	2	3	4	5	6	7	8	9	10	总分
得分											

Direction：There are totally two pages and 60 marks of examination paper．You must write all your answers，include your name and student number clearly，on a given answersheet．You have 2 hours to solve all the questions．Please mark your name and id on each answer sheet．

1．Give the following statements：
（a）If I graduate this semester，then I will have passed the physics course．
（b）If I do not study physics for 10 hours a week，then I would not pass physics．
（c）If I study physics for 10 hours a week，then I can not play volleyball．
Answer the following questions：（9 marks）
（a）Formalize them in logic approach．
（b）Prove or disprove the assertion：if I play volleyball，I will not graduate this semester．

2．Define a binary connective $A \oplus B$ whose truth table is given in Table ？？．Answer

A	B	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Table 1：Truth table of \oplus
the following questions．（7 marks）
（a）Is $\{\oplus\}$ adequate？
(b) Add the atomic tableau of \oplus into atomic tableaux.
(c) Discuss the validity of $(A \oplus B) \rightarrow((A \wedge \neg B) \vee(\neg A \wedge B))$ by using tableau proof.
3. Given a formula $\Phi(x, y)=(\varphi(x, y) \rightarrow(\forall x)(\psi(x) \vee(\exists x) \varphi(x, y)))$, answer the following questions.(8 marks)
(a) Show which occurrence of every variable is free. If it is bound, show which quantifier bounds it.
(b) Given a function $f(z, x)$, is $y / f(z, x)$ in $\Phi(x, y)$ substitutable? Show your reason.
(c) Discuss its truth of $\Phi(x, y)$.
4. Prove or disprove the following statements using tableau proof system. If it is false, a counterexample is needed: (9 marks)
(a) $\{A \vee \neg B, B \vee \neg C, C \vee \neg D\} \vdash A \rightarrow D$.
(b) $\forall x(\phi(x) \vee \psi(x)) \leftrightarrow(\forall x \phi(x) \vee \forall x \psi(x))$.
(c) $\forall x \exists y(\varphi \vee \exists z \psi) \rightarrow \forall x \exists y \exists w(\varphi \vee \psi(z / w))$, where φ and ψ are any formulas with free variables x, y and $z . w$ is a variable not appearing in φ and ψ. (3 marks)
5. Give two sentence $\alpha=(\forall x P(x)) \rightarrow Q$ and $\beta=\forall x(P(x) \rightarrow Q)$. (9 marks)
(a) Prove that $\beta \models \alpha$ in semantics approach.
(b) Prove it by using tableau proof.
(c) If x is free in Q, discuss the truth of the following assertion $((\forall x P(x)) \rightarrow Q(x)) \vdash \forall x((P(x) \rightarrow Q(x))$.
6. Construct a set of sentences S and prove that it has only infinite models. marks)
7. Let $S=\left\{\phi_{i}\left(x_{1}, \ldots, x_{n_{i}}\right) \mid i \leq n\right.$ for some $\left.n\right\}$ be a set of open formulas on top of a language \mathcal{L}. If S is unsatisfiable, there are only finitely many ground instance of elements of S whose conjunction is unsatisfiable.
8. A graph $G=\langle V, E\rangle$ is 2-colorable if and only if G has no odd cycle. Given a binary predicate $E(x, y)$, which means that there is a edge between vertex x and vertex y. (9 marks)
(a) Construct a sentence ϕ_{n} to represent there is no cycle with n-length. (Hints: Construct it recursively.)
(3 marks)
(b) Use a set of sentences Σ to describe that G is 2-colorable.
(c) Prove that a graph is 2 -colorable cannot be described by a sentence ψ. (Hints: Consider $\neg \psi$ and sentence set Σ, then apply Compactness Theorem.) (4 marks)

