Fudan University

复旦大学

2011-2012学年第2学期考试试卷

课程名称: 离散数学(II)		课程代码:	SOFT130040.01
开课院系: 软件学院		考试形式:	开卷
姓名:	学号:	专业:	

题目	1	2	3	4	5	6	7	8	9	10	总分
得分											

DIRECTION: There are totally **two** pages and **60** marks of examination paper. You must write all your answers, include your name and student number clearly, on a given answersheet. You have 2 hours to solve all the questions. Please mark your name and id on each answer sheet.

- 1. Give the following statements:
 - (a) If I graduate this semester, then I will have passed the physics course.
 - (b) If I do not study physics for 10 hours a week, then I would not pass physics.
 - (c) If I study physics for 10 hours a week, then I can not play volleyball.

Answer the following questions: (9 marks)

- (a) Formalize them in logic approach. (5 marks)
- (b) Prove or disprove the assertion: if I play volleyball, I will not graduate this semester. (4 marks)
- 2. Define a binary connective $A \oplus B$ whose truth table is given in Table ??. Answer

Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Table 1: Truth table of \oplus

the following questions. (7 marks)

(a) Is $\{\oplus\}$ adequate?

(2 marks)

- (b) Add the atomic tableau of \oplus into atomic tableaux. (2 marks)
- (c) Discuss the validity of $(A \oplus B) \to ((A \land \neg B) \lor (\neg A \land B))$ by using tableau proof. (3 marks)
- 3. Given a formula $\Phi(x, y) = (\varphi(x, y) \to (\forall x)(\psi(x) \lor (\exists x)\varphi(x, y)))$, answer the following questions.(8 marks)
 - (a) Show which occurrence of every variable is free. If it is bound, show which quantifier bounds it. (3 marks)
 - (b) Given a function f(z, x), is y/f(z, x) in $\Phi(x, y)$ substitutable? Show your reason. (2 marks)
 - (c) Discuss its truth of $\Phi(x, y)$. (3 marks)
- 4. Prove or disprove the following statements using tableau proof system. If it is false, a counterexample is needed: (9 marks)
 - (a) $\{A \lor \neg B, B \lor \neg C, C \lor \neg D\} \vdash A \to D.$ (3 marks)
 - (b) $\forall x(\phi(x) \lor \psi(x)) \leftrightarrow (\forall x\phi(x) \lor \forall x\psi(x)).$ (3 marks)
 - (c) $\forall x \exists y (\varphi \lor \exists z \psi) \to \forall x \exists y \exists w (\varphi \lor \psi(z/w))$, where φ and ψ are any formulas with free variables x, y and z. w is a variable not appearing in φ and ψ . (3 marks)
- 5. Give two sentence $\alpha = (\forall x P(x)) \rightarrow Q$ and $\beta = \forall x (P(x) \rightarrow Q)$. (9 marks)
 - (a) Prove that $\beta \models \alpha$ in semantics approach. (4 marks)
 - (b) Prove it by using tableau proof. (2 marks)
 - (c) If x is free in Q, discuss the truth of the following assertion $((\forall x P(x)) \rightarrow Q(x)) \vdash \forall x ((P(x) \rightarrow Q(x)).$ (3 marks)
- 6. Construct a set of sentences S and prove that it has only infinite models. (4 marks)
- 7. Let $S = \{\phi_i(x_1, \ldots, x_{n_i}) | i \leq n \text{ for some } n\}$ be a set of open formulas on top of a language \mathcal{L} . If S is unsatisfiable, there are only finitely many ground instance of elements of S whose conjunction is unsatisfiable. (5 marks)
- 8. A graph $G = \langle V, E \rangle$ is 2-colorable if and only if G has no odd cycle. Given a binary predicate E(x, y), which means that there is a edge between vertex x and vertex y. (9 marks)
 - (a) Construct a sentence ϕ_n to represent there is no cycle with *n*-length. (*Hints*: Construct it recursively.) (3 marks)
 - (b) Use a set of sentences Σ to describe that G is 2-colorable. (2 marks)
 - (c) Prove that a graph is 2-*colorable* cannot be described by a sentence ψ . (*Hints*: Consider $\neg \psi$ and sentence set Σ , then apply Compactness Theorem.) (4 marks)