

Building Social Web Applications

Building Social Web Applications

Gavin Bell

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Building Social Web Applications
by Gavin Bell

Copyright © 2009 Gavin Bell. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Loranah Dimant
Copyeditor: Audrey Doyle
Proofreader: Loranah Dimant

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
September 2009: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Building Social Web Applications, the image of garden spiders, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-51875-2

[M]

1252956734

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

To Lucy:

Thank you for your support, encouragement,
and love.

To Oscar and Max:

The “Daddy go work” days can stop now.

Table of Contents

Preface . xvii

1. Building a Social Application . 1
Building Applications 3
The Distributed Nature of Seemingly Everything 4

Real-Time Services 4
APIs and Their Importance 5
Collective Intelligence: The New Artificial Intelligence 5

Summary 5

2. Analyzing, Creating, and Managing Community Relationships 7
Analyzing Your Users’ Relationships 7

Relationships with Baby Boomers to Gen-C’ers 8
Behavior and Interaction-Based Relationships 9
Pros and Cons of Different Relationship Types 12

Analyzing the Essence of Your Community’s Needs 14
Apple and Its Many Communities 16
Determining Your Site’s Purpose 17
Creating and Nurturing Relationships 18

Summary 20

3. Planning Your Initial Site . 21
Deciding What You Need 21
Building a Web Application 23
Choosing Who You Need 24
Planning the Life Cycle 27

Expecting to Evolve with the Community 27
Keeping Your Application Simple 29
Avoiding the Line Item Approach 30
Getting to the Core Quickly 31
Taking Time to Plan 32

vii

Communicating During Development 33
Managing the Development Cycle 34

Feature Prioritization and the Release Cycle 34
Choosing a Development Methodology 35

Collecting Audience Feedback 35
Why Would People Continue to Visit Your Site? 36

Summary 38

4. Creating a Visual Impact . 39
Dynamic Interactions 39

The Power of Partial Page Reloads 40
Designing Around Community-Generated Internal Pages 40
Visual Design and Navigation 41

Design First 47
Page Types 47
Designer Roles and Team Approaches 48

Copywriting 51
Summary 52

5. Working with and Consuming Media . 53
Media Types Affect Consumption Styles 53

Analyzing Consumption Patterns 54
Collecting Consumption Data 57

Media Evolves and Consumption Styles Change 58
“comment is free” 58
Amazon: Reader Reviews Encourage Purchases 60

New Services Respond to Evolving Needs 62
Music 62
Photos 64
Video 65

Summary 66

6. Managing Change . 69
Resistance 69

Schema Theory 70
Web Communities and Change 71

Internal Workflow 73
Community Managers 75
Summary 76

7. Designing for People . 77
Making Software for People 78

Waterfalls Are Pretty to Look At 78

viii | Table of Contents

Interaction Design 79
Identify Needs with Personas and User-Centered Design 80

Talking with Potential Users 81
Naming Influences Perspectives 82

Common Techniques for UCD 82
Running Interaction Design Projects 83
Using Agile and UCD Methods 84
Beyond UCD 86

HCI and Information Architecture 87
The Craftsman Approach 89

Learning to Love Constraints 90
Keeping Experiments Quick 92
Figuring Out the Social Aspect 92
Subjects, Verbs, and Objects 93

Including You, Me, and Her Over There, Plus Him, Too 95
Moving Quickly from Idea to Implementation 96

Explaining to Others What You Are Doing 98
Creating Service Functionality Documents 99
Calculating Content Size 99

Don’t Let Your Users Drown in Activity 101
Implementing Search 102

Member-Specific Search 103
Advanced Search 104

Understanding Activity and Viewpoints 104
Recipe Books: An Example 105
Remembering the Fun 106

Twelve Ideas to Take Away 106
Summary 108

8. Relationships, Responsibilities, and Privacy . 109
We Are in a Relationship? 109
Personal Identity and Reputation 110
Handling Public, Private, and Gray Information 110
Privacy and Aggregate Views 112
See But Don’t Touch: Rules for Admins 114
Private by Default? 115
Setting Exposure Levels 115
Managing Access for Content Reuse, Applications, and Other Developers 119

Content Reuse 120
Don’t Give Away Too Much Power 121
Licensing Content 122

Summary 122

Table of Contents | ix

9. Community Structures, Software, and Behavior . 123
Community Structures 123

Publisher-Led 123
Interest-Led 124
Product-Led 124

Supporting Social Interactions 125
Non-Text-Based Social Interaction 127
Competition: Making Games Social 130
Content Creation and Collectives 131
Social Microblogging 132

Who Is Sharing, and Why? 134
Competition Between Peers Skews Interaction 134
Talking About Things That Are Easy to Discuss 134

How Are They Sharing? 135
Being Semiprivate 135
Lifestreaming and Social Aggregation 135
Overfeeding on Lifestreams 137
A Simple Core for Rapid Growth 139

Social Software Menagerie 140
Blogging 141
Commenting Is Not the Same As Blogging 143

Groups 144
Group Formation 144
Group Conversation 145
Group Aggregation Tools 150
Collaboration Tools for Groups 150
Social Platforms As a Foundation 151
Ning and White Label Social Software 152
Growing Social Networks 153

Summary 154

10. Social Network Patterns . 155
Sharing Social Objects 155

Relationships and Social Objects 156
Determining the Right Social Object 157

Published Sites Expect Audiences 158
Deep and Broad Sharing 159
Capturing Intentionality 162
Cohesion 163
Filtering Lists by Popularity 165

Filtering Lists to Show Recent Content 165
Calculating Popularity Across a Site 168

Commenting, Faving, and Rating 169

x | Table of Contents

Commenting 169
Faving or Marking As Favorite 171
Rating 172

Internal Messaging Systems 173
Friending Considered Harmful 176
Sharing Events 177
Summary 177

11. Modeling Data and Relationships . 179
Designing URLs 179
Getting to the Right URL 180
Permalinks 181
Putting Objects on the Internet 182

Issuing Identifiers 184
Identifying People 185
Using Data-Driven Site Design 186
Handling Containment 186
Changing Identities and Linking Content 188
Identity and Context-Dependent Views 188
Exploring a Video Example 192

Aggregating Data to Create New Content 195
Exploring Groups 196

Handling Groups and Privacy 197
Handling Privacy and Scaling Issues 198

Making the Most of Metadata 199
Connecting the Relationship to the Content 200

Modeling Relationships 200
Entering the Geoworld 201
Becoming “Brokers of the World” 205

Considering Time Implications 206
Looking Beyond the Web 207
Summary 208

12. Managing Identities . 209
Existing Identities 209
Forms of Identification 210

Email 210
Real Names Versus Aliases and Screen Names 210
OpenID 211
Tips for Account Registration and Verification 213

The Need for Profile Pages 214
Profile Page Anatomy 214
Real-World Profile Pages 216

Table of Contents | xi

Activity Pages 221
Invisibility and Privacy 222
Summary 224

13. Organizing Your Site for Navigation, Search, and Activity . 225
Understanding In-Page Navigation 226

Tagging Content 226
Searching for People 229

Connecting People Through Content 231
Providing Activity Pages 232

Determining Activity Page Content 234
Filtering Activity Lists and the Past 236

Using Replies to Create Conversations 237
Allowing for Content Initiation Versus Content Follow-Up 239
Providing for Email Updates 240
Creating RSS Feeds 241

Who Stole My Home Page? 242
Providing for Site Navigation 243

Creating Page Titles 245
Summary 247

14. Making Connections . 249
Choosing the Correct Relationship Model for Your Social Application 249

Creating the Language of Connections 252
Blocking Relationships 252

Information Brokers 253
Notifications and Invitations 253

Invites and Add As Follower Requests 254
Secure and Personal Invites 255
Pending Invites 255
Spam 256

Social Network Portability 256
Social Graph 256
Importing Friends by the Book 257

Spamming, Antipatterns, and Phishing 259
Address Books, the OAuth Way 260
Changing Relationships over Time 263
Administering Groups 264

Public or Private? 264
Regulating Group Creation 265

Summary 266

xii | Table of Contents

15. Managing Communities . 267
Social Behavior in the Real World 267
Starting Up and Managing a Community 268
Trolls and Other Degenerates 269
Separating Communities 270
Encouraging Good Behavior 271

Authenticating Through Profile Pages 271
Rating Posts and People 272

Gaming the System 274
Membership by Invitation or Selection 275
Rewarding Good Behavior 275
Helping the Community Manage Itself 276

Moderating a Community 277
Intervention and Course Correction 278
Premoderation and Libel 279
Extreme Measures: Banning Users and Removing Posts 280
Absent Landlords Lead to Weak Communities 281
Filtering and Automation 281

Balancing Anonymity and Pseudo-Anonymity 282
Summary 283

16. Writing the Application . 285
Small Is Good: A Reprise 286
How Social Applications Differ from Web Applications 286
Agile Methodologies 287
Deployment and Version Control 288

Testing Live Is Possible, but Use Conditionality 290
Test-Driven Development 291
Automated Builds Make Management Easier 292
Applying Developer Tools to Social Applications 292
Making Use of Flexible Development with Your Community 293

Infrastructure and Web Operations 294
Managing Operations 295

Designing Social Applications 296
Using Prototypes, Not Pictures 296
Assisting Developers with Use Cases 297
Designing in Good Behaviors 297

Your App Has Its Own Point of View 298
How Code Review Helps Reduce Problems 298

The Power and Responsibility of Naming 299
Being RESTful 301

Beyond the Web Interface, Please 302
i18n, L10n, and Their Friend, UTF-8 302

Table of Contents | xiii

Bug Tracking and Issue Management 304
Tracking Tools 305
Prioritizing Issues 306
Differentiating Bugs from Feature Requests 306
Handling Security 307

Rapid User Interfaces 308
Rapid Prototyping 309

Scaling and Messaging Architectures 309
Ajax Helps with Scaling 310
Queuing Non-Visible Updates 311
Real Time Versus Near Time 312
Polling Versus Pushing 312
XMPP Messaging 313
External Processing: Scaling on the Fly and by the Batch 314
Performance Testing 315
Languages Don’t Scale 315
Cache, Then Shard 315
Fast and Light Data Storage 316

Implementing Search 317
Identity and Management of User Data 318

OpenID for Identity 318
What to Ask for on Registration 319
When a User Chooses to Leave 320
Admin Users 320
Accessing Content via OAuth 321

Federation 324
Making Your Code Green and Fast 325
Building Admin Tools and Gleaning Collective Intelligence 326

Social Network Analysis 328
Machine Learning and Big Data Sets 329
Reputation Systems 329

Summary 330

17. Building APIs, Integration, and the Rest of the Web . 331
“On the Internet” Versus “In the Internet” 331
Making Your Place Within the Internet 332
Why an API? 333

Exposing Your Content to Search from the Internet 334
Running Services, Not Sites 334

Being Open Is Good 335
Arguing for Your API Internally 336
Implementing User Management and Open Single Sign-On 336

Integrating Other Services 337

xiv | Table of Contents

Lightweight Integration Works Best 337
Avoiding Data Migration Headaches 338
Avoiding Duplication 338
Email Notifications: Managing Your Output from Multiple Applica-
tions 339
Making an API the Core of the Application 339
Handling People and Objects, the Stuff of Social Applications 339

Designing an API 340
RPC 341
REST 341
XMPP 342
Response Formats 342

Comparing Social APIs 343
Tumblr 343
Flickr 343
Twitter 344

Reviewing the APIs 345
Writable APIs 346
Extending and Fine-Tuning Your API 346
Wrapping API Calls 346
Using API Alternatives 347
Using HTML Badges 347
Interoperability Is Harder with Snowflake APIs 347
Sticking with Standards 348
Standardizing APIs 348
Using OpenSocial 348
Creating a Standard 349

Managing the Developer Community 349
API and Scaling Issues 350
Allowing Integration 350
Real Time Versus Near Time for APIs 351
APIs Can Be Restrictive 352
Not Just Your Own API 352

Create an API? 353
Summary 353

18. Launching, Marketing, and Evolving Social Applications . 355
Loving and Hating the Home Page 355

Your Site Launch 359
The Soft-Launch Approach 359
The Hard-Launch Approach 360
Your Product Name 360
A Friendly Invitation 361

Table of Contents | xv

Financing Your Site 361
Offering Premium and Freemium Models 362

Marketing 363
Achieving and Managing Critical Mass 363

Arriving with Context 365
Considering Contact Import APIs and Their Importance 367
Using Tools and Services for Launch and Support 367
Nurturing the First Few Hundred Users 367
Encouraging Your Community 368

Evolving Your Site 370
Remaining in Beta 370
Balancing Feature Requests and Issue Management 370
Adding Functionality 371
Build Something New or Refine the Old? 371
Adding Functionality After Refining 372
Watching for What Your Community Demands 373
Keeping Up with the Competition (or Not) 376
Avoiding Feature-Led Development 377
Encouraging Data-Supported Development 378
Making Useful Products (Experience-Led) 379
Determining When a Bug Is a Bug 380
Staying Focused and Coherent 381
Planning for Redesigns and Refactoring 382

Establishing the Rhythm of Your Evolving Application 382
Summary 383

Index . 385

xvi | Table of Contents

Preface

Over the past decade, the Web has become an increasingly social place. Social activity
has moved beyond message boards to become a wider part of the Internet. Most people
have heard of Facebook, MySpace, and Twitter; indeed, many people now have a profile
on a social network. The term social media is part of our lives for better or for worse,
and expressions such as citizen journalism are commonplace. Facebook alone has more
than 200 million registered people.* What is different in this new world? People will
come to you with a prior existence; they are on the Web already.

You need to recognize and incorporate this change into your design and development
processes. Your website needs to offer something genuinely useful and become a home
away from home for your community; the people coming to your site need to feel
comfortable talking to other people there and keen to come back for more.

This book is about making applications in this new Web, frequently referred to as Web
2.0. Much heat and light (and a lot of hot air) have been spent on defining exactly what
Web 2.0 is, but this book will focus on the social web. Over these 18 chapters, we’ll
look at designing systems that support social human behaviors. I’ll be using terms such
as social software and community to describe what we are building and to reinforce the
idea that there are people out there, beyond the servers.

Design As the Primary Approach
This is primarily a “design is how it works” book, based on my experience as an inter-
action designer and product manager. The hardest part of creating a social application
happens before any code is written. Understanding human behavior and creating
something that fits in and perhaps changes current behavior is a tough nut to crack.
There will be plenty of technical discussion later in the book, too. This book will show
you how the Web is changing, as well as some emerging patterns for widespread social
interaction, where individuals act as a composite person across dozens of sites on the
social web.

* http://radar.oreilly.com/2009/04/active-facebook-users-by-country-200904.html

xvii

http://radar.oreilly.com/2009/04/active-facebook-users-by-country-200904.html

Who This Book Is For
The book is aimed primarily at developers and designers (of all kinds: product, inter-
action, and visual), as well as project managers and editorial staff members. These are
the people who will be implementing and running the actual product. If you are already
running a web community, perhaps as a community manager or a developer evangelist,
this book will help you figure out how to extend the functionality of your site to make
the most of your community. If you have one of the many other roles involved in making
a web company tick—business owner, web producer, marketing, or editorial—this
book will help you understand the issues involved in bringing people to your website.

Who This Book Is Not For
I hope this book has something to offer most people who are considering building a
social web application. However, I should give you an idea of what you will not find
in these pages. If you are looking for detailed code examples of how to implement the
various features in social web applications, this book is not for you; it is deliberately
light on code samples. Languages and frameworks rise and fall in popularity, and I’m
not a regular software developer. So, rather than include a load of code I didn’t write,
I spoke to a range of active software developers and included their thoughts throughout
the book.

What You’ll Learn
There are dozens of decisions you will need to make before you can launch your new
feature or site. This book aims to help with the ones that fall between project manage-
ment, design, and development. These are the decisions that derive the essence of the
product you are making, but there is no single group of people that makes them.

The title of this book deliberately focuses on the application side of building things for
the Web. Websites are gaining application programming interfaces (APIs) and a means
of data exchange, so they are becoming more application-like and less a collection of
pages.

The Web is important, but it is not all-encompassing (for most people). You need to
see your website in the context of people’s lives, not the other way around. Building
social software focuses mainly on human behavior and expectations and less on tech-
nical issues, so there is not a lot of code in this book. Reading this book will challenge
you with a wide range of questions about the site that you have or are planning. An-
swering these questions will enable you to build an appropriate product that fits well
into people’s lives. This book will help you articulate and quantify some critical things:

xviii | Preface

• How to go about creating the product—the vital initial planning phase

• How to figure out what to make first and what you are actually making

• How to model the relationships between yourself and the people on your site, as
well as their independent relationships to one another

• How to represent these relationships in ways that feel right for your audience

• Understanding how your website interacts with the rest of the Web, how to make
these connections stronger, and why this is a good idea

• How to implement these ideas in code, and the issues you will need to deal with
when iterating your site after launch

• Why having an API is important for your site

• Why simple feature-for-feature copying of another site often fails

You must know how to do the following things in order to encourage a devoted
community:

• Build something that people will use

• Make them feel at home

• Give them ownership

• Track them

• Let them follow what is happening on the site

• Know what to build next

I can’t guarantee that reading this book will allow you to create the next Flickr or
Facebook, but you will understand what made those sites a success, as well as how to
apply those ideas and nuances to your own area.

How This Book Is Organized
Chapters 1 through 8 set out a series of questions for you to answer so that you can
plan and build a good website. Chapters 9 through 18 are more practical, exploring
how social software works and how to create and manage your own social application.

Typographical Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
and directories

Preface | xix

Constant width
Indicates code, text output from executing scripts, XML tags, HTML tags, and the
contents of files

This icon signifies a tip, suggestion, or general note.

This icon signifies a warning or caution.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596518752

xx | Preface

http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9780596518752

Supplementary materials are also available, including a bibliography, at:

http://www.gavinbell.com/bswa/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

How This Book Came About
This book came into being thanks to Simon St.Laurent. He approached me after I spoke
at the O’Reilly Tools of Change 2007 conference in San Jose, California. The following
weekend at Foo Camp ’07, over a couple of glasses of wine, we decided that the pre-
sentation should grow into a proper book. From there through the book proposal and
on into the writing, he has been a great help. There were lots of books that described
the technology side of creating products for the Web, but a lack of books on making
social products. I hope this book goes some way toward addressing that need.

I worked in many places while I wrote this book: The British Library, my home, on the
London Underground, on various Virgin Atlantic flights, in hotel rooms in San Fran-
cisco, Austin, Boston, and New York, and in a number of London cafés.

There is a lot of Gavin Bell in this book. This book is about social applications, which
includes personal profiles and information. Rather than impinge on my friends, I’ve
used a lot of examples from my own usage of social applications. I hope you’ll
understand.

Acknowledgments
Thanks to all the speakers whose talks I’ve sat in on and the authors whose books I’ve
read. I’m sure you will find some of your ideas in here. Forgive me if I’ve not credited
you directly.

Thanks to the many people with whom I discussed the ideas in this book. You all
influenced the shape and scope of this book in many ways: Matt Biddulph, Matt Jones,
Tom Coates, Ben Cerveny, Matt Webb, Simon Willison, Tom Armitage, Chris Heath-
cote, Adam Greenfield, Tim O’Reilly, Dan Saffer, Meg Pickard, Jeremy Keith, Gavin
Starks, Edd Dumbill, Kevin Anderson, Leah Culver, Steve Ganz, Adrian Holovaty,
Larry Halff, Simon Wardley, Leslie Chicoine, James Governer, Lane Becker, Kevin
Marks, Paul Hammond, Artur Bergman, David Recordon, Chris Thorpe, Kathy Sierra,
Blaine Cook, rabble, Kellan Elliot-McCrea, Chris Messina, Jyri Engeström, and James
Duncan Davidson.

Preface | xxi

http://www.gavinbell.com/bswa/
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Thanks also to Derek Powazek, Matt Haughey, Leisa Reichelt, danah boyd and Clay
Shirky, Mark Earls, Steve Souders, Toby Segaran, Jesse James Garrett, Micheal Lopp,
Tim Berners-Lee, and Steven Pemberton for helpful presentations. I’d also like to thank
the authors of the books I’ve referenced; there is a bibliography on my website.

Additional thanks go to Timo Hannay and my colleagues at Nature: Louise Morton,
Mat Miehle, Ian Mulvany, Euan Adie, and Alf Eaton. Matt Jankowski from ThoughtBot
has been an excellent development partner. Timo let me take time off one day a week
to work on the early part of the book; the book is much better for it. Thanks also to
Timo for giving me freedom to explore my ideas at Nature.

Thanks to the many people who commented on the public chapter outlines on my blog,
http://takeoneonion.org, and via Twitter—in particular, Terry Jones, Paul Mison, and
Brendan Quinn. I’d also like to thank Simon Batistoni, Joshua Porter, and Elizabeth
Churchill in particular for excellent feedback on drafts.

I’d like to thank my editor, Simon St.Laurent; my development editor, Robyn Thomas;
and my technical editor, Matthew Rothenberg. They have caught and corrected many
errors and stray thoughts. Any that remain are my own responsibility.

My production team: Audrey Doyle, copyeditor, and Loranah Dimant, production ed-
itor and proofreader; Karen Montgomery, who designed the cover; David Futato, the
interior designer; Robert Romano, the illustrator; and Lucie Haskins, who created the
index. They all deserve my thanks; there is a lot of work that goes into making a book,
as I’ve learned.

My parents, Arthur and Doreen, gave me the support and encouragement to explore
what I’ve wanted to do in my life, which I’ve really appreciated. My wife’s parents, Tom
and Vivienne, have been really supportive and helpful throughout.

Finally, thanks to my wife, Lucy, and my sons, Oscar and Max, who put up with my
regular absences while I was writing this book. I could not have written it without the
love and support of Lucy, nor the smiles and encouragement of my two boys.

xxii | Preface

http://takeoneonion.org

CHAPTER 1

Building a Social Application

“Why are you building a community?”

If you cannot answer this question after a few seconds of thought, the odds are good
that no one coming to your site will be able to, either. The elevator pitch should be
about value for them, not for you. What will make them stay around?

Social applications come in three main types: those that focus on products, those that
focus on content, and those that focus on activity. You need to decide what will be a
good fit for your community or the community you want to attract, as well as under-
stand what is happening in related communities and sites.

There are many ways to visualize this. As an example, Figure 1-1 shows the areas of
photography captured by various imaginary websites. The lefthand side represents the
act of taking pictures, and the righthand side represents the act of viewing photos.
Different sites sit at different places in this process. A–D represent companies that each
have a single and different product aimed at this market. Perhaps B is more focused on
technical advice about taking photos, while C and D are more focused on viewing
pictures.

A new company might want to offer something different—perhaps E positioned as
shown in Figure 1-2. At one level, noting where the other products are in the market
in relation to you is simple competitor analysis—finding places that aren’t already
occupied—but there is more to it than that. To build a good application, you need to
understand the flow of activity and how your project might fit into this flow.

1

Figure 1-2. How your product (E) might fit into the flow of activity

Figure 1-1. Flow of activity and corresponding web applications; each box represents a potential social
application for photography

2 | Chapter 1: Building a Social Application

A large part of this decision making draws on psychology as well as
marketing or advertising approaches. Mark Earls’ book Herd (Wiley)
provides an excellent description of how mass audiences behave. De-
spite the frequent focus on individuals in social software, it is important
to understand group activity, too.

Building Applications
Applications are based on the activities and behaviors of your community, but you can
also borrow ideas from some of the great social applications on the Internet. I reference
about 40 to 50 different sites in this book, but I focus on only a small number of well-
known ones: Twitter, Last.fm, Flickr, and Dopplr. I chose these because they are pop-
ular, I use them, and they represent different types of sites. Roughly speaking, Twitter
is a general conversation site; Last.fm is for listening to and recommending music;
Flickr is for talking about photography and (personally) significant events; and Dopplr,
the newest of the four sites, is a service for travelers.

Your site needs to make sense to an individual for him to use it—he needs to gain
something from his solo interaction with the tools on your site, or at least see the sense
in using the application. Community then happens almost as a by-product of the user’s
interaction with others. You cannot set out with the goal of creating a community. You
can start with something that makes sense if lots of people use it, but you need to offer
a core tool that makes sense when it’s used alone. This acts as the scaffolding to support
users returning to the site, where they will hopefully start to become part of a com-
munity for themselves.

Modern web applications need to be social by default. The Web no longer places site
owners in a position above those who use their sites. No longer is it enough to see your
site as a destination and to bolt on a message board as a small token toward interactivity.
There has been a shift from issuing a persistent identity, which started with webmail
(Hotmail, Gmail), to recognizing the external identities of the people using your
products.

Many people now have a place on the Internet that they call home, and they are just
visiting you. Integrating the preexisting lives of these individuals with your site gives
them a richer and deeper connection to it. Bear in mind that you are likely to be drawing
together an existing community, as it is hard to create a new community online com-
pletely from scratch. The groups you draw in will behave in a similar manner to real-
world groups of people; after all, they are still human beings. Imagining that you are
face to face with your users is an important technique to get your site behaving
appropriately.

Genuineness and authenticity are key values in community management. You cannot
make a community, you can only encourage one. If your community efforts are shallow
and commercial, you are likely to provoke rather than encourage a community. Large

Building Applications | 3

commercial brands can work well with community, but they tend to play more of a
supporting role. You have to be careful, however, not to try to take the easy route
to building something that looks like—but really isn’t—what you want. There is even
a name for attempting to create community by faking it: astroturfing, which means
trying to create fake grassroots support.

Creating applications presents different challenges for startups and big
companies. Small companies might lack the money and the staff to do
big things, but they can be flexible in terms of approach and have plenty
of commitment. Larger companies might have more resources and an
established name, but they will have existing working practices and
many other products to look after.

The Distributed Nature of Seemingly Everything
One surprising aspect of the Internet is the ease of information flow. The now former
Domino’s Pizza employees who posted a video of themselves doing unpleasant things
to customers’ pizzas on YouTube didn’t realize how small the world has become.*

Privacy is slowly evaporating, but you should make sure user expectations for privacy
are clear within your application.

The Internet moves information quickly, but it also encourages distributed services.
The traditional model for a website is a centralized server and software. More services
are becoming distributed, such as music and video file distribution via peer-to-peer
(P2P) services such as BitTorrent. Source code storage using tools such as Git and
Mercurial has become increasingly popular for open source software. This same model
can be applied to people. My music tastes are on Last.fm, my traveling habits are on
Dopplr, my longer thoughts are on my blog, and my shorter ones are on Twitter.

Several services, such as FriendFeed and the Activity Streams project, are trying to
aggregate these fragments, recognizing this distributed nature can be turned into a
strength. If you see the Internet as a place where people come to you, you will lose out.
If you see the Internet as something that you integrate with and propagate your content
and services through, you can take advantage of its distributed nature.

Real-Time Services
In addition to the social web, users are making a slow move toward a real-time Web.
Real-time services are one of the main themes emerging on the Web in 2009. There are
still blog posts, photographs, and longer writing, but being able to deliver content as
it happens is becoming an important service. Twitter leads in this area, but news services

* http://mashable.com/2009/04/15/youtube-fired/

4 | Chapter 1: Building a Social Application

http://friendfeed.com/
http://activitystrea.ms/
http://mashable.com/2009/04/15/youtube-fired/

and similar businesses are also involved. Building a real-time service doesn’t suit
everyone and can be an enormous endeavor.

APIs and Their Importance
To effectively create services on the Internet, you need to create an API—a means of
distributing your content and system behaviors across the Web. APIs let users connect
to your application without working through your web interface, allowing them to
build new applications on your work. Some companies fear people not coming to their
site, resulting in lost ad banner revenue, but it is far better to reach out via an API and
create long-term active users than to make transient income from a few click-through
ads. The more someone uses your services, the more you can learn about him. Making
this work demands good infrastructure planning and sound web operations—
otherwise, your company will not thrive.

Collective Intelligence: The New Artificial Intelligence
Many of the newer web applications start out with community at their core, acting as
collective intelligence gatherers. Built on an architecture of participation, they encour-
age individuals to enrich the site for themselves, and through this, engender a network
effect that shows the richness available to all. A classic example of this is tagging—
adding a tag helps an individual find information again, but it also labels the item for
someone else to find. Community is a core part of these collective intelligence appli-
cations. The design process to make these work well covers much of the same ground
as discussion-led community sites.

Summary
Designing your application and its role on the Internet is a start. Successful applications
gather data, make it useful, and offer services based on it to the rest of the Web (as well
as offering a fun place to hang out). A successful application is a combination of a small
number of useful tools and a mechanism for social exchange among friends.

Summary | 5

CHAPTER 2

Analyzing, Creating, and Managing
Community Relationships

Building any sort of community site entails creating and managing many kinds of social
relationships that are tightly bound to the context of their creation. In this chapter,
we’ll explore how individuals develop into communities and how this affects the kinds
of relationships we can create. We’ll also look at how companies and markets have
changed such that now we need a new approach to managing and interacting with the
people who form our communities, an approach that brings us closer to these individ-
uals and creates less of an “us versus them” situation between customer and supplier.

Analyzing Your Users’ Relationships
Perhaps you do not already have a space on your site for the people you interact with,
but whether they are customers, readers, or viewers, they probably feel some sort of
relationship with you. Developing social software will help you to deepen this rela-
tionship and allow these people to interact on a one-to-one basis with your company.
Their relationship with your company is only the beginning: enabling the people who
come to you to form relationships independently should also be a goal. If you already
have a community space, you are probably thinking about updating it and also need
to consider these possibilities.

The realization that there are several different types of people you can interact with is
important and, perhaps, obvious. It has a definite impact on the types of communities
you can foster. Age is a strong factor; younger people have a more immediate and
personal relationship to technology than older people (I’ll expand on this topic later in
this chapter). However, this does not mean that older people are never going to become
active members of your site—you just need to approach them differently.

7

Relationships with Baby Boomers to Gen-C’ers
Over the past 20 years, we have seen rapid changes in terms of what people can create.
However, unlike the turn of the 20th century when the gentleman scientists were the
only people who had the knowledge and financial means to experiment, today these
abilities are open to many more groups of people, and cost is much less of an issue.
This newest cohort is sometimes referred to as Generation C. The C represents content,
creation, creativity, control, and celebrity, as defined by http://www.trendwatching
.com, a large consumer trends firm—with a network of 8,000 trend watchers—that
issues monthly reports on new trends. Generation C is not defined by a particular birth
date, though most were born in the 1980s and later and are considered to be digitally
native. They have been immersed in technology since at least their teenage years and
so have very different expectations from people born in the 1960s and 1970s. For in-
stance, rather than wishing a broadcaster would make a documentary on the plight of
some group, they are likely to grab a video camera and make the documentary them-
selves. This urge has always been present, but it is now much more in the mainstream
than it was in the days of analog tape and cameras.

People’s expectations are often set by what was possible while they were growing up.
For example, if you were born in 1971, you saw the arrival of music CDs. If you were
born in 1985, by the time you were thinking about buying music in the late 1990s,
iTunes had arrived and you were downloading music through the Internet. The music
industry’s plan to migrate from CDs to DVD-Audio or Super Audio CD wasn’t a great
success. Both of these higher-resolution physical disc formats languished in player and
disc sales. Consumers started to demand individual tracks as opposed to entire CDs,
and they wanted music that was free of digital rights management (DRM) schemes (not
what the music industry hoped would happen when the CD was launched). Digital
access to music encouraged people to think about reusing music and to break out of
the album model for listening to it. People wanted to be able to listen to songs on the
device of their choosing and in the order they preferred. This was possible in the 1980s
with mix tapes, but with digital music, the record companies tried to lock the formats
down tightly. Over the past decade, Generation C has won, as most music is now sold
“DRM free.”

Generation C is making a profound impact on how companies forge relationships with
their customers. Until the late 1980s, other than a few people on the edge, consumers
took a more passive role in society. Even the term consumer describes this “sit back”
mentality. The process of creating content and even of forming opinions, as well as the
distribution of the content and opinions, was in the hands of large organizations run-
ning television or print media. Now, with access to the Internet, increased computing
power, and digitization of the media capture and production processes, consumers are
taking a more active role.

Apple and others have been quick to recognize this new type of individual, sometimes
called the prosumer (coined by Alvin Toffler in 1980) or the pro-am movement (coined

8 | Chapter 2: Analyzing, Creating, and Managing Community Relationships

http://www.trendwatching.com
http://www.trendwatching.com

in 2004 by Demos, the UK-based think tank). Products such as GarageBand (see Fig-
ure 2-1) are a good example of the fruits of this recognition. GarageBand offers a simple
means for creating music, and allows people to create professional-sounding demos for
hundreds of dollars, rather than the thousands a music studio might charge. Garage-
Band is also very useful for putting together (video) podcasts. These media changes are
perhaps not directly relevant to traditional community software, but purely text-based
communication is no longer the sole means for interacting online. Larger companies
are not the only groups that can create an audience. Any motivated group of individuals
can create quality content and attract an audience.

Figure 2-1. GarageBand, which enables both amateur and professional musicians to create high-
quality music recordings

Behavior and Interaction-Based Relationships
The media landscape has changed with the rise of the citizen journalist. The derivation
of this term is hazy, but it was popularized in the 2004 book We the Media by Dan
Gillmor (O’Reilly). The term refers to the idea that anyone can set up a blog, or shoot
video and post it to YouTube. Media production is no longer the preserve of the large
newspaper group or broadcaster. What relevance does this have if you are not in the
media business? Your customers are now less likely to passively wait for you to respond
to their desires. The Cluetrain Manifesto, by Rick Levine et al. (Basic Books), describes
this change succinctly: “The end of business as usual.”

Analyzing Your Users’ Relationships | 9

http://oreilly.com/catalog/9780596007331/

Looking back over the past nine years, we saw a surge in web development, and then
a crash. After the dot-com bust, a new approach evolved that focuses on fewer, leaner,
smarter websites that value their relationships with people as individuals. However, for
every Flickr or YouTube, there are thousands of failed startups. Getting the right mix
of people and technology is difficult. Scaling for high-volume web traffic is also difficult,
and every new technology raises concerns about it. However, scaling for community
interactions is also a difficult social problem. While the scaling problems caused by
growth generally mean that your product is doing well, scaling to support social growth
needs earlier planning. The move to a social relationship means we are no longer simply
concerned with the technical implementation of the website: “Does it function? Is it
reliable?” We are now setting up systems that closely integrate with people’s lives, and
therefore these systems also need to solve problems of a sociological or psychological
nature. Many interaction designers—among them Dan Saffer in his book Designing for
Interaction (Peachpit Press)—argue that this was always the case, but the representation
of people on our websites makes this explicit. It is no longer enough to make software
that merely functions; we now have to create online spaces to host human behaviors
and interactions.

Several common types of relationships can exist between an organization and its cus-
tomers. I’ll discuss these in the following subsections. Figures 2-2 through 2-5 show
some examples.

Choosing the right collective noun for people is tricky. Not every or-
ganization is a business, and not every organization has customers. So,
I’ll use a variety of terms, and let you insert the one that works best for
you.

Customer-service-driven

Customer service is one of the more obvious reasons to engage with your community.
This splits into two rough groupings: customer service based on the company gener-
ating the product or service, and customer service in a more retail-based setup in which
the company is selling branded goods coming from another company. If you run an
organization such as these, usually in retail, there is the secondary relationship with
the manufacturer to handle. Customer service forums, such as the one shown in Fig-
ure 2-2, are often spaces for gaining help from the manufacturer or for helping other
users of the same product.

Publisher-driven

The second group of community sites operate in response to some editorially produced
material. This can range from a magazine or a newspaper to TV and radio. Generally,
a strong voice at the center of the organization, usually the publisher, directs the opin-
ions and views of the organization, and the viewers, readers, and listeners react. There

10 | Chapter 2: Analyzing, Creating, and Managing Community Relationships

is little opportunity for the individual to initiate conversation, though plenty of chances
for him to respond and discuss, as shown in Figure 2-3.

Member-driven

The third group comprises people who want to host a conversation where anyone can
initiate a new topic. This is the common message or bulletin board system, deriving
from systems when dial-up was the main means of access. Jason Scott produced a
documentary covering this early period of community, largely pre-Web (http://www
.bbsdocumentary.com/). I’m making a distinction between these message boards and
those support forums coming from a manufacturer. In the case of the generic message
board, there is no direct support coming from a single company. The site will likely
cover a hobby, an issue, and products from multiple companies, as shown in Fig-
ure 2-4. The contributors on the site do not have a financial arrangement with the
people who run the site in terms of purchased product—by this I mean it is not a
shopping site. These open, subject-led message boards represent a huge area of activity
on the Internet.

Contributor-driven

The fourth group consists of community or social networking sites that allow postings
of more complex content, such as Flickr (shown in Figure 2-5) and YouTube. Here, a
more direct relationship exists between the site and the individual than in the other
three types of relationships. The language people use to describe their relationship is

Figure 2-2. Apple customer-led discussion support website

Analyzing Your Users’ Relationships | 11

http://www.bbsdocumentary.com/
http://www.bbsdocumentary.com/

different, too., i.e., people refer to their “profile page” or just their “page.” In addition,
they feel a stronger sense of attachment to these sites, and they will talk about their
photos or videos with a sense of ownership. Often, this is because the sites help them
manage some aspect of their lives, from trips to photos to events they are attending.
These sites form part of their connected lives on the Internet. A major difference be-
tween these and the other types is that the entry to the site is often via a personal profile
page and not a topic or the front page of the site. People visit to look at Tom’s photos
or to see which events Matt is planning to attend. This lack of a front door is significant
and a positive.

Pros and Cons of Different Relationship Types
In the first three types of relationships—customer-service-driven, publisher-driven, and
member-driven—the emphasis is on the site as a whole and the conversations that occur
within it. For many types of companies, this seems to be the right model of
interaction—the conversations are, after all, about their products, stories, or shared
hobbies.

Figure 2-3. New York Times community comments on a blog post

12 | Chapter 2: Analyzing, Creating, and Managing Community Relationships

However, these three types of relationships can start to feel a bit like islands; they tend
to look inward for reference and there are few tools to connect the conversation to the
outside world. The fourth social network type—contributor-driven—tends to be more
open, allowing hosted content to be displayed off-site by embedding tools that allow
for redisplay; e.g., YouTube videos or SlideShare presentations. There are many reasons
for this. For one, the content tends to work better in isolation. In addition, it also works
well as marketing for the hosting site: many people have seen a YouTube clip, even if
they have not been to the YouTube site.

Contributor-led sites sound like the perfect model, but they can lead to a situation in
which the same discussions occur again and again, as new people ask questions that
have already been answered. Furthermore, some communities can suffer if there is too
much focus on initiation of conversations. A representation of who contributes to the
community and their level of experience can help. For example, a useful feature can be
to show who has been on the forum for a while. However, if you simply count the
number of posts, as many bulletin boards do, you can end up just tracking those who
have free time on their hands, which might not be what you want. Additionally, you
want to help new users find answers to questions that have already been asked. This is
analogous to turning a training book into a reference book—archiving the previous
discussions for both new visitors and regulars is a boon. Features such as the question
profiling service on Get Satisfaction, a multiproduct customer support service, are

Figure 2-4. UK sports discussion forum (OUTDOORSmagic) showing community-generated reviews

Analyzing Your Users’ Relationships | 13

invaluable for this reason. Essentially, this service tries to find questions that have al-
ready been answered that match the question being asked (see http://getsatisfaction
.com/).

Analyzing the Essence of Your Community’s Needs
Before you have people on your site, you need to have things for them to interact with.
You need to identify the primary objects in your world that you can let your customers
or readers own or give to you. It may be something more complex than just words on
a screen, perhaps something such as pictures or video. You need to determine the
essence of the interaction between people in your community, be it restaurant meals,

Figure 2-5. Flickr page showing aggregated content for San Francisco

14 | Chapter 2: Analyzing, Creating, and Managing Community Relationships

http://getsatisfaction.com/
http://getsatisfaction.com/

books, pictures, or quality of plane travel. Table 2-1 shows some popular sites and the
social objects around which they are designed.

Table 2-1. Social objects for popular sites

Site URL Social object

Flickr http://www.flickr.com Conversations about photographs (plus video and places)

Seesmic http://seesmic.com Video conversations

FFFFOUND! http://www.ffffound.com Pictures

Dopplr http://www.dopplr.com Trips (and meeting up with friends)

Twitter http://twitter.com Short text messages

FriendFeed http://friendfeed.com Aggregated flow of content and responses from a person

Delicious http://delicious.com URLs

Upcoming http://upcoming.yahoo.com Events and who is attending

SlideShare http://www.slideshare.net Presentations and the people who gave them

Last.fm http://www.last.fm Music listened to

YouTube http://www.youtube.com Videos

In the examples in Table 2-1, the obvious object is not always the one the community
pivots around. At first glance, most people would say Flickr is about photographs, but
more frequently it is your friends’ reactions to those pictures that make Flickr work.
Dopplr is about the trip and the potential for social interaction that the trip might
engender. Last.fm is about the music on one level, but about social relationships and
music discovery on another. For each of these cases, the site provides an initial means
of data capture; more complex behavior can be layered on top.

This might seem a bit abstract, but bear with me. I have been designing social software
for scientists for the past few years, so let’s look at some of the analysis that resulted in
the products for Nature, the science journal.

When examining what scientists do, you might say the primary things in their world
are the experiments they conduct. Certainly, they spend a lot of time running experi-
ments, and you might determine that they would like a community in which to discuss
them. However, experiments are usually confidential. So, while the experiment is
probably the most likely topic to engage a scientist in conversation, that conversation
will happen only within the scientist’s lab. Another approach might be to look at what
scientists use, which might result in a product database site listing reagents or equip-
ment. Interesting, but not really compelling.

Scientists are rated on their publications, so this is a good place to look next. They gain
or lose grants on the basis of where they are published, so the conversation needs to be
about papers that have been published, instead of papers about to be published (which
would, of course, betray those secret experiments).

Analyzing the Essence of Your Community’s Needs | 15

http://www.flickr.com
http://seesmic.com
http://www.ffffound.com
http://www.dopplr.com
http://twitter.com
http://friendfeed.com
http://delicious.com
http://upcoming.yahoo.com
http://www.slideshare.net
http://www.last.fm
http://www.youtube.com

Stepping back from the life of a scientist for a moment, you can see the kind of analysis
you might want to do for the people on your site. For each case, you need to consider
what people might talk about and whether they are free to talk about these things. Then
you need to create a framework to facilitate these discussions.

Photography is a different kind of field. People might discuss photographs and their
merits, or lenses and cameras and their quality. However, how to actually take a picture
is hard to discuss, as it is a more practical skill. So, you tend to see equipment and
photo-critique conversations online, whereas illustration techniques are usually cov-
ered in books or on DVDs.

Essentially, you need to get down to the things that people care about, not the mundane
details or the purely abstract. There is, however, great mileage in the “chewing the fat”
conversations. So, there are many sites that discuss what Apple might do next, alongside
forums for hardware and software products on hundreds of sites.

Now you have an idea that a simple message board might not be enough for compelling,
long-term engagement with your readers. You’ll want your site to reflect the products
you create or the stories you generate. This leads to a challenging decision. Do you let
people write what they want, or do you pick and choose what appears on your site?
Sadly, the answer to this is not a simple yes or no, and there are legal ramifications
underlying this decision. I’ll return to this in Chapter 8, but I wanted to flag the pos-
sibility of an editorially managed community versus an open discussion space here.
Each has strengths and weaknesses, so keep this in mind as you read on.

Alongside these different possible community arrangements are many types organiza-
tions. Even within the same industry, there are different kinds of companies. Each can
create different types of relationships depending on its position in the market or the
type of product it creates or trades. Some companies need to present multiple views of
themselves to the world.

Apple and Its Many Communities
Apple is a good example of a multiview company that has embraced community. Apple
chose to do it in different ways for each of its three audiences: journalists, consumers,
and developers. (In reality, Apple has many other audiences, but for the sake of sim-
plicity, I’m ignoring the retail community.) Apple has a different means of communi-
cation with each of these communities. For the people who buy its products, Apple has
discussion forums on http://discussions.apple.com, where unofficial user-to-user sup-
port happens, under the oversight of Apple employees. For official support, you are
still encouraged to contact Apple directly or use the support website.

16 | Chapter 2: Analyzing, Creating, and Managing Community Relationships

http://discussions.apple.com

Apple seems to take a dim view of negative threads on its products, and
even locks or deletes such conversations on occasion. An article on a
third-party site, Tom’s Hardware, covers the deletion of some conver-
sations regarding LCD panel bit depth. The title of the linked-to
article is “Apple Censorship.” Many companies use this practice,
though it does not make conversations go away. It is important to realize
that the Internet is one network; you can push conversations such as
these off your own site, but you cannot silence them.

For developers, Apple has a set of mailing lists hosted on http://lists.apple.com (again,
it offers informal support). Apple also has a bug-tracking system and a ticket-based
help system for developers.

For journalists, Apple has a press release website and mailing list. It also hosts invite-
only briefings and events for the media and investors.

Each of these means of communication is a good fit for its audience. Mailing lists for
developers is a good choice, as developers are good at using and finding technical in-
formation. It is also an ongoing conversation, one which the developer will perhaps be
part of for years. Plus, the conversations can be archived locally on the developer’s
computer. For the more general discussion aimed at users of Apple’s products, the
public forums work because they are in an easy-to-discover place that many people will
go to when they have a problem. (Visibility is more important than long-term involve-
ment.) Finally, for journalists, Apple publishes press releases and runs press conferen-
ces; in this case, it fits its message to the working practices of journalists.

Determining Your Site’s Purpose
To create a purposeful engagement with your (potential) community you first need to
have a clear idea of who you are and the purpose of your company. For, say, fiction
publishing, this might be entertainment. Once you know this, you can create something
of value beyond an incremental extension of your core business. Moving from books
to book reviews is social, but there are other areas to explore. For example, Penguin
took this bolder approach and created We Tell Stories with the development com-
pany Six to Start. The result was a set of stories that can be told only on the Internet.

Taking a wider view, book reviews are a popular idea. Another possibility might be fan
fiction or sharecropping stories where community members write stories using the
same worlds (settings, characters, etc.) as published authors. Neither of these is that
satisfying for the hosting company, and to some degree it competes directly with the
business of publishing books. So, moving onward, if books are about entertainment,
then what about game playing that allows readers to continue experiencing the settings
and characters in the worlds they’ve enjoyed when reading the books? This extension
can work in many situations, and in Chapter 9, we’ll explore some techniques to get
beyond a simple message board.

Analyzing the Essence of Your Community’s Needs | 17

http://www.tomshardware.com/reviews/apple-display-update,1747.html
http://lists.apple.com
http://sixtostart.com/we-tell-stories/

The term sharecropping comes from shared fields, which are common
in agricultural communities, though the word has negative connota-
tions in the United States because of past abuses. Some authors permit
others to write stories in the worlds they have created, while others try
to forbid it. For a good overview across different genres, see http://home
pages.paradise.net.nz/triffid/trimmings/volume1/art41.htm.

If you create content for your site, try to avoid competition with the voice of your users.
You need to make sure you do not create a platform that gives the impression that you
have taken on the role of official “publisher” for your community. Clarity between what
is your content and what is your users’ content is important. Also, if the community
individuals are commenting on your published content, it is important to have your
staff interact with the community, to avoid a “you versus them” situation.

Creating and Nurturing Relationships
If the community is the focus of what you do—perhaps you run a hobby site or you
are selling a product—you can concentrate on managing the relationship within your
community. However, in any situation, there is a community host, and one of your
most important decisions is who will represent your side of the community. As dis-
cussed in “Community Managers” on page 75, I suggest it should be a consistent
person or group of people, and preferably not employees in marketing or sales. You
need people who understand how the Internet works; they should be the digitally native
people I mentioned earlier.

When Flickr launched, the hosting staff was present on the site for hours at a time,
meeting and getting to know their new community of photographers. This early launch
phase was intense, but it created a strong sense that the creators of Flickr cared about
establishing a friendly community:

George Oates (an early Flickr employee) and I would spend 24 hours, seven days a week,
greeting every single person who came to the site. We introduced them to people, we
chatted with them. This is a social product. People are putting things they love—
photographs of their whole lives—into it. All of these people are your potential evangel-
ists. You need to show those people love.*

This discussion on content leads nicely to a term I dislike: user-generated content. It
implies faceless entities making valueless stuff. Kevin Anderson, blogs editor at the
Guardian, a popular UK newspaper, renamed it community-generated content, which
is better, in my opinion. Flickr’s Heather Champ, along with her husband, author Derek
Powazek, uses the term authentic media,† which also indicates the right sense of com-

* From Inc., “How We Did It: Stewart Butterfield and Caterina Fake, Co-founders, Flickr,” December
2006; http://www.inc.com/magazine/20061201/hidi-butterfield-fake_pagen_2.html.

† http://www.powazek.com/2006/04/000576.html

18 | Chapter 2: Analyzing, Creating, and Managing Community Relationships

http://homepages.paradise.net.nz/triffid/trimmings/volume1/art41.htm
http://homepages.paradise.net.nz/triffid/trimmings/volume1/art41.htm
http://www.inc.com/magazine/20061201/hidi-butterfield-fake_pagen_2.html
http://www.powazek.com/2006/04/000576.html

munity you want to encourage. However, if you can use more concrete terms, such as
photographers put photos and conversations on Flickr, it is better than saying users or
user-generated content.

Communities can also drive your own behavior. “The Archers,” a long-running radio
serial on the BBC, is a lovely example of giving the people something to do. The message
boards used to close at 10:00 p.m. In the United Kingdom, bars close at 11:00 p.m., so
the community set up a Yahoo! group to host the conversation until 11:00 p.m. This
mimicked the natural lives of the characters in the radio program, so when time was
called at 11:00 p.m., people would say good night and head to bed. (“The Archers”
message board now operates all the time; the community encouraged the BBC to allow
longer opening hours.)

Your company brand can work both for and against you when creating relationships.
You need to determine the value your brand adds to your site. Will users react positively
to it? Also, companies often operate in cost-constrained markets, so there might not be
money to spend on community development. In this case, perhaps sponsoring another
site would be a better choice than a company- (brand-) supported community site. If
you don’t have the resources to manage a community, it may make sense to support
another site that does.

If you have a prestigious brand, it can draw people to you, but it can
also make them hesitant to contribute to your site. They may not wish
to say something lightweight in the presence of senior peers. In situations
such as this, you can operate moderated conversations like The Econo-
mist does with its Oxford-style debates. The Oxford Union hosts regular
forthright debates, which encourage audience participation.‡

Chris Anderson, editor-in-chief of Wired and author of the book The Long Tail (Hy-
perion), notes that social networking is a feature, not a destination.§ So you need to
have a means for people to do something more than peruse through a “Rolodex of
contacts,” as Om Malik, a senior writer for Business 2.0, describes it.‖ The social ex-
change around trips, photos, or music must be possible for there to be a reason to
return.

The Flickr example showed the amount of work that launching a site can entail. Do
not underestimate this. Whether you have an existing community or are starting from
scratch, you will have a cold start in terms of community. The likelihood is that people
will come and kick the tires and then most of them will leave. If that happens, you need
to look hard at what you are offering to and expecting of your community. They will

‡ http://www.oxford-union.org/debates

§ http://www.longtail.com/the_long_tail/2007/09/social-networki.html

‖ http://gigaom.com/2007/02/05/are-social-networks-just-a-feature/

Analyzing the Essence of Your Community’s Needs | 19

http://www.oxford-union.org/debates
http://www.longtail.com/the_long_tail/2007/09/social-networki.html
http://gigaom.com/2007/02/05/are-social-networks-just-a-feature/

not hang around to help you out for long; growing a community-led site beyond the
first few hundred friends of friends is an arduous, but rewarding, task.

Summary
The aim of this chapter was to get you thinking about the kind of relationship you want
to have with your community. What will the conversations focus on in your world?
Who will go to your site? What will make them tell someone else about it? Why will
they stay? Who will they interact with? Take some time to answer these questions before
moving on to later chapters. This early understanding of why and for whom you are
creating your community is vital.

20 | Chapter 2: Analyzing, Creating, and Managing Community Relationships

CHAPTER 3

Planning Your Initial Site

When you’re in your little room and

You’re working on something good,

But if it is really good

You’re gonna need a bigger room,

And when you’re in the bigger room

You might not know what to do

You might have to think of

How you got started sittin’ in your little room.

—“Little Room” by the White Stripes

The needs of the people using your site should drive its features and direction. You are
no longer presenting a set of pages, but rather you are creating a place where people
can talk and build relationships with one another and around your products.

This kind of software development draws on both desktop application design and
website design approaches, but it takes a different shape from developing systems
where users interact with an application rather than with each other.

Deciding What You Need
Creating a place for a community to hang out ultimately requires some software de-
velopment, whether it’s a small piece of integration work or a larger piece of system
development. Why do you need to write software?

For relatively simple situations—when you are making something that is just for and
about the community—you can tailor one of the many existing community products,
such as message board systems or blogging software. However, if you want to have a
blog and a message board, it can be difficult to integrate two different systems. Similar
issues arise when you try to integrate content and social software. One way or another,

21

you’ll likely end up writing some software if what you’re doing uses more than a simple
post-and-respond model.

On the more ambitious side, building something fresh means you can get the right fit
for your audience. You can build something that is tailored to their world, something
bespoke rather than off the peg (rack). Ensuring a close fit between the language and
behavior of your existing audience and your new website will make the space feel nat-
ural to people. Creating a unique service costs more, but users will be happier.

For an interesting description of the differences between the terms be-
spoke and off the peg from the point of view of tailoring a suit, see English
Cut, the blog of a bespoke Savile Row tailor.

Community software comes in a variety of different types. Assembling a site involves
much more than just combining components, but these are the basic pieces:

Blogs
Sites that host articles, usually offering a means of replying on the same page. The
articles are listed on the front page of the blog in reverse chronological order. Ar-
ticles may be written by an individual or a group, and may be long or short.

Comments
Offer the ability to engage in a discussion about an article. While comments are
an aspect of blogging, they can also be used in other contexts, typically in content
that is published or broadcast in other media. The author of the article is usually
less prominent than the author of a blog, and the interaction is usually less personal.

Wikis
Collaboratively created and edited documents, usually heavily interlinked to form
a deeply cross-referenced site. They are commonly used as project management or
documentation tools.

Message boards
Let users post short articles that invite responses, often question-based. Anyone
on the message board can initiate a new topic, which is where message boards differ
from blogs and commenting.

Social networks
Sites that let people catalog and express themselves through objects that are hosted
on the site—a photograph, for example.

Social applications
Applications such as Drupal and Ning (also known as white label social software),
which offer a range of the functionality in this list on top of being core social net-
working products.

Integrating these pieces and linking together separate pieces of software from different
providers is hard to do well and often results in a poor user experience.

22 | Chapter 3: Planning Your Initial Site

http://www.englishcut.com/archives/000016.html
http://www.englishcut.com/archives/000016.html

For example, you might use Movable Type for your blog, and then add MediaWiki as
a wiki and phpBB for a message board. However, each of these applications expects to
be the center of its own world. This means that it is difficult to get these applications
to share the idea of a common registration database for the people on the site (regis-
tration databases are pretty much the foundation of a social software application).
However, hope is in sight, as initiatives such as OpenID, a new mechanism for identity
management, are showing that every application does not need to be the sole identity
provider for its own registration database. (“Implementing User Management and
Open Single Sign-On” on page 336 explores some of these possibilities.)

These integration issues mean that creating a social web application is not like creating
a building or other construction project. When you start to create sites that are more
like an application than a static set of pages, you need to take a different approach to
development. If you are certain that you need only one means of interaction with your
community, using off-the-shelf software can be a quick route.

Building a Web Application
Coming up with ideas for web applications is easy—creating the applications is the
hard part.

Creating for the Web is very different from, say, television or radio production, or even
book writing. In these areas, the means of delivery are well understood. For instance,
fundamentally, the process of making television shows hasn’t changed in decades—
the special effects have become fancier and the crews have become smaller, but the
process of making a program is the same. Time and money are invested in new program
concepts, and copycat programs then take this new formula and apply it to other subject
areas.

On the Web, the cycle has a different shape. You might start with ideas about online
pet food delivery or photo-sharing sites or selling books or promoting charities. You
could come up with 20 different ideas for websites on your next commute if you tried.
There are no barriers, such as available channel space, so there are also dozens of people
trying to do the same thing. So, what makes one particular site work and another that
is seemingly the same disappear without a trace? The quality of the execution has a lot
to do with it.

Let’s step back from web application development and look at something that most
people have experience with: cooking. Whereas I love to cook, you may not, but the
setup is the same for all of us: we buy ingredients from the market and then prepare
them at home. The meals can be simple or complex, but the process is the same. Good
restaurants take a similar approach, but they have a large staff and more specific tools
and processes. But regardless of how extensive the restaurants’ menus may be, they all
start with the same ingredients.

Building a Web Application | 23

Like all analogies, this one collapses if you work it too hard (just like whipped cream).
However, the level of preparation a good restaurant aspires to is the level you want to
be thinking about when developing a new application. Good food is not only about
the ingredients, or even their quality; it is about the overall process. Good ingredients,
good hygiene, good preparation, and a good cook will generally result in a good meal.
Skip any one of them, though, and the meal will suffer.

Translating the cooking analogy to web application development equates to hiring
good people, starting with a good idea, doing the proper research, and then taking that
research and ensuring that there is adequate time for all elements to be worked on.
Website implementation breaks down into four main elements, the first three of which
are “standard” web design practice:

Backend code
Data storage and overall application behavior

Frontend HTML (including templates)
Application interaction with the user

Visual design
Look and feel of the application

Text
Interface and communication

The fourth element—and the one that is often passed over—is the copy; the words that
make up your application. This last piece is critical, as the language you use to com-
municate with your audience needs to reflect how they think and speak. Using corpo-
rate language or overtly technical terms such as OAuth (a means of allowing external
applications access to content on a website, which we’ll talk more about in Chapters
12, 14, and 16) will make it hard for users to enjoy your site. Simple, clear language
describing purpose and intent is usually better (see Figure 3-1).

Choosing Who You Need
Addressing the elements discussed in the previous section requires selecting a devel-
opment team and delegating tasks. I’ll refer to a lot of basic job roles throughout this
book, but there is a lack of consensus regarding precisely what tasks each role should
perform. Following are my definitions of each role’s responsibilities. Feel free to disa-
gree with me, but this set of roles covers most of what needs to happen on a project:

Product manager
This person defines what the product should do and who it is for; often this role
is held by the main decision maker on the team. Ideally, product management is a
single person who consults others, rather than a committee. It helps to have one
person look after the product’s long-term direction (at least the three- to six-month
outlook).

24 | Chapter 3: Planning Your Initial Site

Developer
This person writes the code that sits on the server and makes the application run.
The developer will also define the database structure and set up the server infra-
structure. As your company grows, you might also have a separate database ad-
ministrator, perhaps a consultant. Having more than one person in the developer
role helps a lot. In small companies, the developer often performs the operations
role, too.

Frontend developer
This person is responsible for writing the code that generates the HTML, and often
writes the CSS and JavaScript as well. This role blurs into the developer role to
some degree when a framework such as Ruby on Rails or PHP is used.

Editorial
These are the people who are directly responsible for the company-provided writ-
ten content on the site. In publishing or media companies, these people will prob-
ably think they are in charge, and that might be true according to the organizational
chart, but you have to make sure they have experience developing web applica-
tions. Ideally, their role eventually morphs into that of community manager. Gen-
erally, they have the most direct contact with the people who use the site.

Figure 3-1. The different layers in a website; in practice, each layer blurs into the one above and below
it

Choosing Who You Need | 25

Project manager
This person is responsible for ensuring that the site is delivered on time, coordi-
nating all the work efforts, calling meetings, and ensuring that adequate docu-
mentation is written. This is a tough job that sometimes is included in the product
manager’s role. Usually the project manager is focused on timely delivery and fi-
nancial management.

Visual designer
This person makes sure the site communicates well. This involves much more than
merely ensuring that the site looks pretty. Visual designers are responsible for the
typography, color palettes, and layout of the site. This role overlaps with the
frontend developer role and the interaction designer role. Ideally, these three roles
cooperate on page layout, and their duties entail more than a simple handover of
Photoshop or wireframe files.

Interaction designer
This person determines the potential flows of interaction through the application.
Larger teams usually have a dedicated interaction designer. On smaller teams, the
product manager handles these responsibilities, with the help of the visual designer
or frontend developer and support from the rest of the team.

Information architect (IA)
This is often a freelance role. The IA defines the structure of the information on
the site, and is heavily involved prior to launch and potentially during major
changes.

Copywriter
Having a single person responsible for the words on the site will help to give the
site a consistent voice and will aid in communicating what the site is about. How-
ever, often the interaction designer, the editorial staff, or the product person will
take on this role.

Business manager
This person is financially responsible for the site and its advertisement. The busi-
ness manager might be the editorial or product person, or a senior stakeholder
outside the main product team.

Community managers
Ideally, any editorial staff members become the community managers. This role is
responsible for contact with the audience, channeling feedback, moderating the
site, and generally being the face of the site. Community managers can also act
internally as the advocate for your site’s users.

Small teams can work really well when launching a site. If you can manage to have a
product person capable of handling the interaction design and information architecture
tasks working with a developer who is sensitive to user experience issues, you will
progress very rapidly. Adding a community manager, a server-side developer, and a
visual designer will create a solid team. Once your team grows to more than five people

26 | Chapter 3: Planning Your Initial Site

(four people can sit together easily, six at a pinch), communication consumes much
more overhead, and you will need to figure out more explicit processes for
communication.

Planning the Life Cycle
Good products have a life cycle that evolves and responds to changes. Web applications
in particular are not static services that are delivered once and then left in maintenance
mode until no one uses them anymore. They need to evolve in response to the needs of
the people using the site.

Web applications are alive in a sense; they change and alter their focus in response to
the direction in which their communities are headed. Picking the right technology is
only part of creating an application; picking the right problem is the key. Einstein once
said that if he were given 20 days to solve a problem, he would spend 19 days defining
the problem. When planning the life cycle, you are addressing the issues we discussed
in Chapter 2: who are you making the site for and why will they bother to return to it?
This is not a one-off capture of requirements—rather, it is a continuous process of
listening and collaborating.

Expecting to Evolve with the Community
A pair of well-known examples will help to demonstrate how the evolutionary process
works. It is important that you continue to evolve your application after launch. Com-
munities and your subject are not static; new behaviors and better ideas will surface.
If you stop improving your site, you cannot take on these opportunities, and people
will leave. A social application in maintenance mode may as well be switched off.

Twitter

Twitter created a new type of communications medium that bridged email, instant
messaging, mobile phones, and the Internet into a common messaging bus, one that
operates at Internet scale. Twitter consists of 140-character messages sent from indi-
viduals to generally public profile pages, to which other people can subscribe. Twitter
refers to the subscribers as followers, and messages can be sent by means of a Short
Message Service (SMS) or text message from a mobile (cell) phone. You can also send
a message from your Instant Messaging client application or via the web interface at
http://twitter.com. Lastly, you can send a message via numerous client applications on
the desktop or as web applications.

Twitter’s main issues have been rapid growth and ensuing stability issues (http://blog
.twitter.com/2008/09/trimming-sails.html). Twitter has also been watching how its
product is evolving through usage. For instance, the syntax of using “@” and your
screen name within a Twitter message comes from message boards and Internet Relay
Chat (IRC). People started using “@” on Twitter to mark a comment for someone’s

Planning the Life Cycle | 27

http://twitter.com
http://blog.twitter.com/2008/09/trimming-sails.html
http://blog.twitter.com/2008/09/trimming-sails.html

attention. Initially, Twitter ignored this usage—the text was just displayed as plain
text—but it subsequently adopted this syntax so that typing @zzgavin as the first thing
in a message or tweet (a common expression for a message sent on Twitter) would do
three things. First, it would make @zzgavin in a message become a link to the profile
page http://twitter.com/zzgavin. Second, text would be added to the message displayed
on the website saying that this was “in reply to” a message from @zzgavin; the “in reply
to” text would then become a link to the most recently uttered tweet from the person
who was being “@replied to.” And third, there was a personal @replies view for these
types of messages on the website as part of your own Twitter account.

The @reply syntax is supported in a number of external products, among them Twit-
terific, as it is supported in the API. This @reply functionality evolved again in early
2009 to find any mention of @zzgavin in a tweet. Figure 3-2 shows an early version of
Twitter with a Replies tab.

Figure 3-2. An early screenshot of Twitter, showing the Replies tab, now reimplemented

Through clever use of the @reply approach, some of Twitter’s early adopters encour-
aged the product team to add features it had not originally planned to. However, the
team did not initially react to similar encouragement to incorporate hashtags (e.g.,

28 | Chapter 3: Planning Your Initial Site

http://twitter.com/zzgavin

#oreilly is a hashtag for O’Reilly). Extracting hashtags required too much detailed
parsing of the tweet, whereas the @reply just needed to check whether the first char-
acter was “@”. Summize, a company that Twitter bought, provided a solution for
hashtags by offering a comprehensive search product.

There is a balance between adding features that have evolved through use and main-
taining your site. In early 2009, Twitter changed the @reply syntax to become men-
tions. Twitter now finds a mention of @zzgavin anywhere in the message. The feature
has been renamed to mentions, too. Gradual evolution of functionality is the aim, which
Twitter continues to do successfully.

Flickr

Flickr’s initial product was a chat application with photo-sharing capability, as Jesse
James Garrett discusses in his interview with Eric Costello (http://adaptivepath.com/
ideas/essays/archives/000519.php). But Flickr added a huge range of functionality in
response to how the application was being used. Flickr moved from being a real-time
Flash-based chat product to a slower-paced but more useful web product with unique
URLs for photos and persistent conversations. The real-time chat product, then
called FlickrLive, was retired in favor of the purely HTML version.

The site enjoyed widespread usage of the web-based product, and maintaining both
the Flash and the web-based tools was too much of a stretch for the development team.
Removing functionality such as FlickrLive was a difficult decision, but it gave time back
to the developers and allowed them to focus their efforts on the core features. And
although some fans of FlickrLive were dismayed by its retirement, dealing with short-
term unpopularity for the good of the whole site is sometimes necessary. The more
popular solution would have been to try to maintain both products, but that may have
resulted in weaker delivery of both. Focusing on specific features and stopping work
on features that are no longer core is the right thing to do.

Keeping Your Application Simple
Thinking too far ahead can result in launching an application that is unable to evolve.
It is very common to think that an application is not ready for launch. In fact, most
people add too much functionality to their applications prior to launch. Keeping ap-
plications small and simple aids adoption, as such applications are easier for your
community to understand.

Saying no to added functionality is really hard to do, but it is an important duty. To
quote Steve Jobs in a Fortune interview, “I’m actually as proud of many of the things
we haven’t done as the things we have done.”* Certainly, I’ve launched sites that had
too much functionality present on day one. The problem with building too much is

* http://money.cnn.com/galleries/2008/fortune/0803/gallery.jobsqna.fortune/6.html

Planning the Life Cycle | 29

http://adaptivepath.com/ideas/essays/archives/000519.php
http://adaptivepath.com/ideas/essays/archives/000519.php
http://money.cnn.com/galleries/2008/fortune/0803/gallery.jobsqna.fortune/6.html

that you are hedging a big bet that you know what your target audience wants more
than they do. As a result, you can end up with a site that has loads of ignored features
and yet people who are clamoring for additional functionality. On the other hand, you
want a site at launch to feel like a place where people can hang out with friends; you
don’t want it to feel empty. There are ways to mitigate this and to produce something
that is big enough so that there is enough to do, but not so big that there is a seeming
lack of focus. The starting stance for “Let’s add this” should be “No”; the case must
be made for each proposed feature. The book Getting Real, written and published by
37signals, has a good chapter on these ideas, which are neatly summarized in this quote
from Clay Shirky:

A brutally simple mental model of the software that’s shared by all users turns out to be
a better predictor of adoption and value than a completely crazy collection of features
that ends up being slightly different for every user.†

Bigger companies can end up in this too big an application trap all too easily (it is less
common for smaller startups, as they have less money). The scenario runs something
like this. The company sets up the project and hires a product designer, usually some-
one with interaction design and information architecture skills. The product designer
races forward, sketching out the possible layers of interaction and the types of infor-
mation to be represented. However, the developers and designers for the project are
busy elsewhere and arrive on the scene later than planned. In the meantime, the product
designer has become committed to the functionality she has dreamed up and has moved
on to some of the less frequently occurring areas (edge cases) in the environment, or
maybe the more advanced functionality. Now, instead of launching a simple, clean
product, your team and management are talking about the clever, cool stuff that could
be made, and the launch date slips to make time to build “killer feature F.” Sound
familiar? This trap is seductive, and it is difficult to realize you have fallen prey to it.
Figuring out what is essential early on, and then building small components, is one way
to deal with this trap. Virtually everything in an application is disposable, as the Flickr
example shows. So, if a team is arguing strongly for or against some piece of function-
ality, it might be time to step back and reassess. An 80% solution is optimal; explore
your product space and focus on the core functionality and ignore the edge cases.

Avoiding the Line Item Approach
The opposite trap to the too big an application approach is the line item approach.
Usually this comes from the project management side. A busy project manager wants
to see the product described in terms that fit in a spreadsheet so that he can keep track
of and tick them off easily. So, in the translation, much of the richness and intercon-
nection inherent in social software is ditched or ill-described in a terse one-liner. This
can result in an application with no cohesion or flow, as each element is dealt with in

† http://blogs.wsj.com/buzzwatch/2008/05/05/wisdom-on-crowds-what-ceos-need-to-know-about-the
-social-web/

30 | Chapter 3: Planning Your Initial Site

http://blogs.wsj.com/buzzwatch/2008/05/05/wisdom-on-crowds-what-ceos-need-to-know-about-the-social-web/
http://blogs.wsj.com/buzzwatch/2008/05/05/wisdom-on-crowds-what-ceos-need-to-know-about-the-social-web/

isolation. The best way to mitigate this is to use lightweight prototypes or simple user
interface mockups showing each state in an interaction. To regain the flow, you need
to be able to experience how the application will work before all the code is finished.

The line item approach can kill a good project and drive away good people, as it takes
all the fun and passion out of building the application. Deadlines and delivery are
important, but making a great product is more important. A line item approach can
also lead to an inward-looking development approach, as the focus is on new features
and not on the community you are trying to encourage. I’ll expand on this in Chap-
ter 7, when I address user-centered design and other approaches.

Building with Passion
It is worth discussing how to get to the nub of what your potential customers might
want to do with your product. Most social software falls into the discretionary category.
No one makes people use it. It doesn’t file your tax return, nor does it run your business.
Your site is competing with other fun or productive things to do, such as hanging out
with friends, playing with your child, or watching a film. This suggests that your prod-
uct should be fun or enjoyable, and people’s interactions with it should be positive and
engaging. Given a free hand, the best people to engender this feeling are those who are
passionate about the subject. Hopefully, you work with some of them. If you can
transfer their energy into the emotional aspects of the site, you will attract similar en-
thusiasts in your early adopters.

This community of enthusiasts is capable of articulating what they want, as they em-
body the hobby, interest, or recreation touted on your site. I’m basically saying that if
you are building a site about mountain bikes, hiring some developers and designers
who go mountain biking will result in a better product. However, not everyone works
in a tight, focused startup company. Hence, the tools in Chapter 7 allow you to get
inside the needs of the community for which you are building your product. You must
feel a passion for the project. Any shortage of engagement on your part will come
through clearly in your application’s lack of focus.

Getting to the Core Quickly
What is the smallest possible problem you can solve for your audience? Often, there
will be half a dozen closely related ideas to the main thing you will be making, but you
want to build the main one first and not get distracted by nice-to-haves. You might
want to get authors to tag their posts on a blogging system, allow readers to tag them,
allow readers to mark a post as a favorite, allow comments, and then generate aggregate
pages for each activity. However, unless you have a good system for creating the blog
posts in the first place, the other things are a wasted effort. A similar case can be made
for most pieces of feature development: get to the nub quickly. Also, adding features
is more fun than making sure something works well, but bug fixing should come before
adding features.

Planning the Life Cycle | 31

Taking Time to Plan
Once you’ve got the core idea, you need to plan, plan, and plan again.

Iterating

The 10-3-1 approach that Apple uses for its product designs is time-intensive,‡ but at
least it allows for plenty of exploration of interface possibilities. Apple designers take
10 fully fleshed-out versions of the interface, created in Photoshop, with real example
text. They choose the strongest features of those 10 and produce 3 new versions, and
then they choose the strongest of those 3 and from them create a final interface design.
The team at 37signals takes a user-interface-first approach, too, as discussed in Getting
Real. Giving an idea this much time is very valuable, as it allows the real problem to be
found and solved, rather than focusing on a surface feature. Ideally, the entire team
contributes to this work. The product management, editorial, and design and
development staff should participate in these iterations, although obviously the de-
signers should do the design work. This allows everyone on the team to get deeply
involved early on in the project.

Showing it off

At some point prior to completion, you will probably need to explain the project to
people outside the project team. Typically, they will expect to see a home page, a site-
map, and some wireframes. Avoid giving them this, if at all possible.

In particular, I’m wary of sitemaps for web applications. They tend to trivialize the
activity in favor of the page content. Once you have a highly interlinked system, one
that has links from both people pages and tag pages to items of content, then the sitemap
stops making sense. Ideally, you should offer these people a walkthrough of the visual
created in the design iterations for the site. You can use linked PDFs or OmniGraffle
files as a means of showing the site’s functionality. A mockup in HTML with pretend
content will provide a more web-like experience of the application. Create web pages
with dummy content and mimic the behavior of the application.

In Chapter 7, I’ll explain more formal means of defining the activity people will engage
in on your site, how they will set goals, and how to document the structure of the
information on your site. These interaction design and information architecture over-
views are important reading for everyone on the team. I encourage you to use HTML
prototypes as much as possible.

Figuring out the verbs

A good high-level task is to look at the verbs that represent the actions your audience
wants and can perform with your content or product. Doing this will give you the main

‡ http://www.businessweek.com/the_thread/techbeat/archives/2008/03/apples_design_p.html

32 | Chapter 3: Planning Your Initial Site

http://www.businessweek.com/the_thread/techbeat/archives/2008/03/apples_design_p.html

sections or areas of your web application. Of course, you’ll need to verify this with your
audience. For example, imagine you are creating a community site about outdoor
cookery. What actions do people perform when they cook outside?

They prepare food, clean the barbeque, cook the food, open a beer, and perhaps take
photographs. Your community might want to share the type of grill they own or their
favorite recipes. In a few moments, you can list the activities a person might engage in.
Note that none of this is about a particular choice of technology or even mode of in-
teraction yet; it is purely about understanding what someone might do in this context.
Then you need to look at what they might want to share regarding this topic, and you
can then get to more concrete tasks such as uploading photographs or rating recipes.

“Figuring out the verbs” is key. It helps ensure that the visual, editorial, and develop-
ment teams be in early agreement about who the site is for and what it is meant to do.
This is not a software-based listing of the functions that need to be written. It is a level
above that: it is identifying the significant actions that the people using your site will
perform. Yet it is also not the high-level feature list of blogs and a community forum
in bullet-point form. It is the shared middle ground in between these three areas that
is trying to answer why they are using your site, and how. In Chapter 7, we’ll look at
some document formats and approaches that help communicate these ideas.

Communicating During Development
Good communication is important when developing web applications. The physical
proximity of the development, design, and editorial teams is really important. Startup
companies can usually achieve this fairly easily, but in larger companies it gets harder.
One recommendation is to try to get everyone on the same floor, ideally within glancing
distance of one another. If this is not possible, everyone should at least meet on a regular
basis to sense-check the development cycle. If you are located in multiple buildings or
in different countries, gather for the major product meetings. Then use tools such as
Campfire from 37signals or IRC to allow real-time communication among people.
Campfire or IRC beat email, wikis, and the phone, as it is searchable and a central place
for communication to happen.

The harder you make it for your team to communicate, the less they will. This is bad
as you want to put an end to poor ideas or weak implementations as soon as you can.
Communication between individuals frequently happens outside the four- or
five-person scheduled meetings. Progress often happens in the five-minute conversa-
tions held in a corridor instead.

Clarifying what you are making away from the big planning sessions means analyzing
the high-level concepts that set out the main functionality of your site. Then you need
to determine how to organize appropriate activities to create an application that offers
personal utility, but then through repeated use generates something that offers social

Communicating During Development | 33

value, too. Understand that you are not just making a website for desktop use. Widgets,
iPhone applications, desktop clients, and APIs all have their part to play.

This chapter will get developers thinking about developing small and adding features
later, and will encourage designers to design so that new user interface elements can
be added easily to the initial visual look. For the project manager, the aim is to under-
stand the stages the application might go through and to adjust to the idea that code
will be dropped and that redesigning is part of having a successful application. Failing
fast and trying stuff out is the underlying idea.

Managing the Development Cycle
Building community software is a long-haul project, and getting to launch is less than
half the journey: you will make the wrong decisions, particularly regarding database
structure; you will change the design; that choice feature will be ignored, and your
community will demand new and different features. Managing the competing desires
of what you want to do and what your audience thinks you should do is hard. Two
things constrain you: money and employee time. If you have plenty of money and time,
you can figure out how to make the service work and continue to refine things. If you
are constrained in terms of available people or money to hire them, you need to pick
what to build or change. Virtually everyone is in the latter group. If you are in the former,
good luck, and pay attention to your burn rate.

Managing the development cycle becomes the most important job for the product team.
There are three main cycles in terms of running the show: the inevitable bug-fixing
stage, the new-feature testing stage, and the main release stage. These cycles operate
on conflicting time scales. You want bug fixes out the door as quickly as you can make
them happen. During feature testing, you again want rapid deployment, but not to your
entire audience. With a major release, you will want a bit of fanfare about the features,
so these releases take longer to plan. The first bug-fixing cycle might take a day or days,
new-feature testing will take days or a few weeks, and the main release stage is likely
to take weeks or months.

Feature Prioritization and the Release Cycle
In the last three chapters of this book, we will look at how version control tools can
help you manage the development cycle, but here we will look briefly at the feature
prioritization and release cycle. Most of the companies I have spoken with use some-
thing similar to a monthly cycle for the release of major updates, but in between this
they have interim bug-fix releases and test releases. The bug-fix releases are pretty self-
explanatory. The test releases are a great way to find out whether new functionality is
worth its salt.

Traditional approaches to release management have used a separately installed version
of the software, which outside people can use to see new functionality. Newer thinking

34 | Chapter 3: Planning Your Initial Site

on this issue from Twitter, Dopplr, and Flickr is that instead of making a separate place
for people to go, you add the functionality onto the live site. However, you make the
visibility of this new functionality conditional based on the person viewing the site. So,
you have a set of alpha testers who use the existing site and gain additional functionality.
This takes the “click here for the beta version” approach used by Yahoo!, the BBC, and
many others to another level. It changes how you develop software, but it can be hard
to implement once you have a live site, as every feature then needs conditionality logic
wrapped around it to figure out which version to show someone.

Salt is important for maintaining health and was paid to Roman legio-
naries as part of their salary. The word salary derives from the word salt.

Choosing a Development Methodology
There are several good books on agile approaches to software development, so I will
not reiterate their thinking in this book. I’m a fan of the Scrum methodology (a lean
software development approach focusing on delivering software as shippable incre-
ments, rather than leaving months between updates; see http://www.scrumalliance.org/
pages/what_is_scrum), as it seems to work well in mixed technical and non-technical
environments. However, a critical point for any agile approach is that you must have
buy-in across the company, as well as the time allocated at the middle management
layer to apply it. Senior staff members and developers like agile approaches, but the
internal middle manager for whom your project is just another in the heap can be the
most resistant. You should check out Michael Lopp’s book Managing Humans (Apress)
for lots of great advice on software development management.

Collecting Audience Feedback
Collecting feedback from your audience is vital, but paying too much attention to it
can lead you down the wrong path. Your earliest adopters will be a keen group of people
doing advanced things, and what they require in terms of functionality will be different
from the general person using your site. If you build for early adopters, you might make
the site too complex for new people, or you might build something that seems like a
really great idea but never gets used.

Early in the development of Nature Network (an online meeting place for scientists),
we got a strong impression from focus groups that subscribers would host events, so
we designed the event-creation system around this fact. It turns out that entering events
into another event-management system was too time-consuming for many scientists.
They already enter the event onto their own sites, which lack any sort of exportable
feed, so they tend not to enter the events and associate them with groups as we thought
they would. We should have waited to implement the functionality until we had enough

Collecting Audience Feedback | 35

http://www.scrumalliance.org/pages/what_is_scrum
http://www.scrumalliance.org/pages/what_is_scrum

people demanding it. Creating functionality that drives changes in behavior is very
difficult to do successfully. It is often better to support existing behaviors and extend
these, rather than offering a whole new workflow. Chapter 6 looks at workflow and
change resistance.

Why Would People Continue to Visit Your Site?
Understanding why people would continue to use your social application is possibly
the product team’s most important task. There are some simple things you can do to
ensure that they will feel comfortable getting started on your site, but one of the most
important is to give them social context. If they arrive on their own, they might fiddle
with a feature or two, but there is little to bind them to the site. They have little op-
portunity to interact with others. Compare this to arriving with a friend; they imme-
diately have content or activity from someone they already know to interact with. An
often-repeated myth is that social networking sites are for making friends. They are
actually for continuing existing social relationships or supporting new ones made face
to face.

Depending on the nature of your site, there are different ways to attract people to it
and get them to use it and continue to use it. The first use experience is important. It
needs to be positive. Critical mass and continued engagement can be achieved in several
ways. It can come from a few vocal people, or many quieter people, or a bit of both.
You need to determine how to get there; some of this will come from the role you see
for your site. Are you encouraging new social relationships or supporting existing ones?
What is the social context for the people coming to your site: a work or business rela-
tionship, a shared interest, or geographic proximity? All of this, as well as what activities
you offer them, will impact how you attract people to your site and retain them.

Having social context gives a sensible reason for the site being on the Web. If your users
are listing their intended trips and no one is looking at them, they may as well list their
trips on a desktop calendar. For the first six months or so after Dopplr launched, people
had to be invited by friends to use the site; this ensured that there was someone you
already knew on the site.

Warmth and a sense of belonging might seem like odd terms to use when describing the
Web, but they are key constituents in terms of how social interactions form and de-
velop. Peter Kollack’s 1999 paper, “The Economies of Online Cooperation: Gifts and
Public Goods in Cyberspace” (http://www.sscnet.ucla.edu/soc/faculty/kollock/papers/
economies.htm), lists four aspects of personal motivation for social engagement online.

Anticipated reciprocity means people are more likely to contribute on the basis of some
future return. (Cory Doctorow calls this a Whuffie, which is the subject of Tara Hunt’s
book, The Whuffie Factor [http://www.horsepigcow.com/book-the-whuffie-factor/]
[Crown Business].) Closely tied to reciprocity is the sense of reputation that people gain
from repeated interactions with one another which can lead to recognition. A sense of

36 | Chapter 3: Planning Your Initial Site

http://www.sscnet.ucla.edu/soc/faculty/kollock/papers/economies.htm
http://www.sscnet.ucla.edu/soc/faculty/kollock/papers/economies.htm
http://www.horsepigcow.com/book-the-whuffie-factor/

efficacy comes from the interactions that people have with a community and observing
the positive outcomes to which these interactions lead.

Finally, there is the attachment that comes from belonging to a community. People
often describe themselves as a Flickr-ino or Dopplr-ista to show that they have a high
degree of self-identification with these communities. They also often place links to their
profile pages for these services on their own websites.

It is difficult to articulate these as goal-based or task-driven activities. Many people
argue that there is no point to Twitter, but those who try it gain a lot from the
interactions that occur there. The experience is the defining characteristic of most social
software, not the feature list.

Thinking of the entire lifespan of user experience is helpful. The term experience arc
comes from Adam Greenfield’s book Everyware (New Riders Publishing). It describes
a view of user interaction that starts from before people’s awareness of your product
and extends to after they have finished with your service. Product owners often focus
on the stages directly involving their site and fail to understand the reasons people visit
their site for the first time or what they might really be wanting. Also, they tend to miss
the reasons for why they leave. The Apple iPod is a good example of a service that
considers many aspects of the user interaction with music. Purchase, playback, hard-
ware, and accessories are all part of the iPod and iTunes world. Adam Greenfield has
an essay examining these mixes of products and services, which, while primarily fo-
cused on physical products, is thought-provoking in terms of the service design aspects
of creating a web application; see http://speedbird.wordpress.com/2007/06/22/on-the
-ground-running-lessons-from-experience-design/.

There are many ways to model an experience arc. A version I have used has the following
stages:

1. Pre-awareness: Before the individual is aware of need

2. Awareness: Recognition of need

3. Search: Looking for a solution

4. Analysis: Choosing the right “product”

5. Acquisition: Making the purchase or commitment

6. Membership: Deeper involvement, self-describing; I am a…

7. Integration: Part of regular life; peer recognition in community

8. Expertise: Extending their knowledge, more depth

9. Withdrawal: Leaving the community with interest or need satisfied

It is worth exploring the individual needs and the product offering against each of these
stages separately. This allows for needs and features to be more clearly matched up.
Note that the first four stages occur prior to a user actually using your site.

Collecting Audience Feedback | 37

http://speedbird.wordpress.com/2007/06/22/on-the-ground-running-lessons-from-experience-design/
http://speedbird.wordpress.com/2007/06/22/on-the-ground-running-lessons-from-experience-design/

Social objects provide only the basic mechanisms for these interactions to take place.
The behaviors and language you attach to the objects will create the atmosphere in
which the community will evolve. Your members will evolve independently, too, hope-
fully following the arc you defined earlier. Community memory is important in social
applications. eBay and Amazon seller ratings are a simple example of this, but com-
munity memory exists outside of trading relationships. Allowing people to comment
on or tag the content from other people is the essence of much social media activity. It
is cyclic: I share some content and get feedback from my community, which will likely
encourage me to continue my participation. If some of this content is entirely private,
the sense of community breaks down. An example might be comments on content
being visible only to the creator rather than to the public. By making the comments
private, some of the warmth of the community is hidden. Allowing a variety of levels
of disclosure will mean people can comment as they see fit: to a few friends, to a group,
or publicly.

Summary
Building community web applications requires a lot of the same processes as building
regular applications, but the influence of your audience will uniquely shape your ap-
plication. A process of small, regular steps alongside some major launches will serve
you well. Internally, you need to be able to agree on what your application is about and
who it is for. Regular face-to-face meetings along with some detailed fleshing out will
help a lot with defining your application. In terms of functionality, one or two main
features is often enough, certainly at the start. Your community will expect your ap-
plication to evolve and will be quite demanding about which direction they want it to
go in. The trick is to be communicative and responsive to their needs, but focused on
the few things that you want to do well.

38 | Chapter 3: Planning Your Initial Site

CHAPTER 4

Creating a Visual Impact

Your audience will not see the code behind your website. They will see the user interface
to your application through the web pages on your site. The goal of this chapter is to
help you understand the difference between the visual approach to creating a web page
and the visual approach to building a web application.

Before we explore how application design is changing, let me make an admission first:
I’m not a visual designer. I can pick colors for the interior design of my house, but I
know the final visual look of a website is best left to others. I know typography, copy,
whitespace, and layout are critical to the understanding and emotional appeal of a
website, but this book won’t tell you how to create fantastic visual designs for the Web.
For that, see Transcending CSS by Andy Clarke (New Riders Press) or CSS Mastery by
Andy Budd (Friends of Ed).

Jesse James Garrett distinguishes the code and the visual elements as
the skeleton and surface planes in his book, The Elements of User Expe-
rience (Peachpit Press).

Instead, I will examine the uppermost layers of a web application and how they interact
with the underlying code. So, I’ll be talking about the HTML, JavaScript, and CSS that
get delivered to the browser your reader is using, as opposed to the code that gets
executed on your web server. This chapter serves as the introduction to Chapter 7,
where we’ll look more closely at what is actually going to happen in your application.
This chapter is more about why visual design is important than how to implement good
visual design.

Dynamic Interactions
The user interface for a community website is not the same as the user interface for a
desktop application, and it performs more complex tasks than simple web pages.
Nevertheless, web design lacks the tools that are required to create the sophisticated

39

and consistent user interfaces we see in desktop applications. There are no NetBeans,
Microsoft Visual Studio, or Apple Interface Builder-like tools that provide a simple
graphical user interface builder for web applications. Dreamweaver filled this role for
creating websites built from static pages, but web applications are more complicated
than that.

The Power of Partial Page Reloads
This in-between application space has evolved from the ability to reload only part of a
web page. Reloading only part of a page speeds up website interaction; there is less to
(re)download, and usually it means fewer pages to navigate to achieve the same result.
In-place editing has become a popular approach for maintaining content, such as profile
pages, as opposed to going to a separate edit page. Google’s Gmail popularized the use
of the XMLHttpRequest JavaScript object, which lets you update only the parts of a web
page that change instead of reloading the entire page. XMLHttpRequest was originally
built into Microsoft Internet Explorer to support Outlook Web Access 2000, but then
it was implemented in Mozilla 1.0 in 2002; today, it is available in Safari, Firefox, and
other browsers.

In his essay, “Ajax: A New Approach to Web Applications” (http://www
.adaptivepath.com/ideas/essays/archives/000385.php), Jesse James Gar-
rett introduced the term Ajax to describe the combined use of
XMLHttpRequest with other technologies to create a better web experi-
ence.

Partial page reloads mean your interactions move from being based on pages to being
based on the main element the page is about: for instance, the photograph, scientific
paper, or song. This shift moves the design relationship away from pages and toward
data, elements, and templates. This means that rethinking how design is practiced and
identifying elements that can be recombined, as opposed to whole pages, is a better
approach.

Designing Around Community-Generated Internal Pages
Traditionally, web design looked at entire pages and focused heavily on the content
and visual look of the site’s home page. Thanks to Google and other search engines,
visitors to your site are much more likely to arrive on an internal page. People are also
much more likely to link to an internal page. Again, the focus moves to the elements
that become recombined with other content—in this case, the content provided by
your community. It is arguably a harder design challenge to generate elements that can
be recombined than to generate whole pages at a time.

The visual look of a site changes when it is built from templates with community-
generated content and a more flowing style of interaction. Small numbers of pages

40 | Chapter 4: Creating a Visual Impact

http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php

designed with a more illustrated or handcrafted look give way to a lighter, less graphical
layout that relies much more on CSS and icons than on single page designs with large
graphical elements. The choice between a fluid or stretchy page layout versus a fixed-
width design remains. A fixed layout with flexible internal sections is a popular choice
for web application development, while setting a maximum width means that special
coherency between elements can be maintained.

The unpredictability of the actual content to be displayed within templates means that
these page layouts need to be more accommodating than typical static pages. Each page
in a web application tends to be the result of someone’s interaction with the site or be
filled with content that your community creates. The majority of pages on a site will
be for public display, but a site can also include a range of private pages for content
upload and account management. Anything that is generated uniquely for a person is
usually a private page. Such pages can have a different design treatment. A good ex-
ample is the Flickr Organizr, which feels more like an application than a set of publicly
viewable web pages.

These newer types of websites offer visitors the chance to do something. Often, a person
can do several things on a page, and can get to a page from several different paths. To
make sense of this, what becomes relevant are the people, the objects in the content,
the actions, and the connections between them. On a page about a music track, for
example, the tags might relate to the actual track, whereas on a page about the artist,
they will relate to the artist and her entire body of work. The ability to comment means
nothing unless it is clear what is being commented on. Identifying who owns or created
something gives a lot of clarity to a page. The music track on an album page means one
thing; the same track appearing on my own listening page means something different.

Finally, the idea of a page having a fixed position in a hierarchy also becomes less
relevant. There is no longer a single contents page and a set order for exploring the site.
Any route through the site can make sense, and most journeys will not start at the site’s
home page. In Chapter 13, we’ll examine the kinds of navigation that are required to
support browsing and discovery in social web applications.

Visual Design and Navigation
The reams of heavy graphical designs from previous years, which looked more like
illustrations from a book than web pages, are largely in the past, though some of these
applications, such as Fire Eagle, do have beautiful artwork. Today, social web appli-
cations tend to have minimal designs that let the content contributed by the community
shine through. Figures 4-1 through 4-4 show some well-thought-out, well-designed
social sites.

Dynamic Interactions | 41

http://www.flickr.com/tools/organizr.gne

Figure 4-1. The visual design of the now-closed Pownce

Figure 4-2. Fire Eagle showing my current location

42 | Chapter 4: Creating a Visual Impact

The shift from static to dynamic pages has impacted the work of the visual designer.
Figure 4-5 shows this shift.

Depending on the type of application you are making, the amount of dynamic behavior
that your site can express will vary. The more people that use your site in a social
manner, the more likely it is to behave more like an application and less like a document-
based website.

A social network is the most application-like of these examples. In these social com-
munities, the entry points are generally internal pages—often a person’s profile page—
and the navigation flows from the content on the page rather than from any sort of
hierarchy. However, such pages often include directions to the main centers of activity,
as shown in Figures 4-6 and 4-7.

The main navigation of a site should include four to five key elements at most. These
should focus on the site’s primary objects: people, groups of people, and the content,
usually emphasizing recent and relevant activity. The Flickr example shown in Fig-
ure 4-7 actually shows two levels of navigation: the main navigation elements, as well
as the navigation for my photostream. The navigation elements on a site will change
as the site grows and new functionality is added. For instance, the Map link on the
Flickr site is a recent addition.

The Nature Network website, shown in Figure 4-8, has three levels of navigation.
Nature Network is the social application that supports Nature.com, a science

Figure 4-3. Twitter showing its pared-down visual look; messages from other people have been made
anonymous (I provided the snowy mountain image in the background)

Dynamic Interactions | 43

http://nature.com

journal.* The left side of the page has two main links: one to the Nature.com home page
and the other to the Nature Network home page via the logo.

On the right side of the figure, there are three levels of navigation. The topmost level
is a common form of navigation that appears on other sites across Nature.com, and it
provides a common reference for the social activities on Nature.com. For instance,
Profile shows you your own profile page, Network shows you your list of friends,
Snapshot gives you updates from everyone in your network, and Account takes you to
your Nature.com account admin page.

The next level down is the Nature Network sitewide navigation showing each main
content area, as well as a page to get to the private activity pages, labeled “You.” Each
of these sections has a submenu with specific options for that area. We decided not to
use drop-down menus, so all navigation options are always visible.

Figure 4-4. Flickr, which lets the photographs shine, keeping the page furniture minimal and out of
the way

* Nature Network is the social community brand from Nature, the science journal. I created some of the
interaction design for social software for Nature, in particular the navigational elements in Figure 4-8.

44 | Chapter 4: Creating a Visual Impact

http://nature.com
http://nature.com
http://nature.com
http://nature.com

This type of navigation represents a common compromise: how to provide navigation
that shows off the functionality of a site for newcomers, how to show the relevant view
of a site for a specific person, and how to represent the parent company, in this case
Nature.com. The topmost menu allows Nature Network to act as a coordinating in-
fluence across other sites and brings all the social activity together.

Figure 4-5. Shift from static to dynamic visual design

Figure 4-6. Vimeo, the video-sharing site, showing the main navigation options

Dynamic Interactions | 45

http://nature.com

The Smashing Magazine website provides many more examples of nav-
igation menus: http://www.smashingmagazine.com/2008/02/26/naviga
tion-menus-trends-and-examples/.

The focus is not on the pages per se, but on the people and the content on those pages.
The navigation is spurred by the relationships between the content and the people who
created it. This is a different way of thinking about site design. Jyri Engeström of Jaiku
coined the term social object to describe something with which people have a relation-
ship, be it a football team, a photograph on Flickr, or a scientific paper. You can have
all the social elements in place and have modeled the relationship perfectly, but if the
site is unappealing, confusing, or hard to use, people will fail to engage and drift away.

Creating and using affordances helps to link activity to content. An affordance is some-
thing that is manifested in the object—for instance, a door affords walking through, a
window affords opening, and a cup affords holding. The term comes from James J.
Gibson† and his theories on visual perception. It works well in terms of social appli-
cation design. Creating simple, obvious prompts for action gives people clear cues re-
garding what it is possible to do on a page. The ability to add a comment and to clearly
show what is being commented on is one example. In terms of navigation, placing
elements so that they can be used as navigational tools works well, particularly for tags.

The core object page should have a clear purpose: to link to the creator and his content,
and to provide a means for social interaction around that content.

Figure 4-7. The main navigation elements from Flickr; these are enough for you to start exploring the
site

Figure 4-8. Navigation options for Nature Network

† http://en.wikipedia.org/wiki/Affordance

46 | Chapter 4: Creating a Visual Impact

http://www.smashingmagazine.com/2008/02/26/navigation-menus-trends-and-examples/
http://www.smashingmagazine.com/2008/02/26/navigation-menus-trends-and-examples/
http://en.wikipedia.org/wiki/Affordance

Design First
A usability study found that people make up their minds about a site in seconds.‡ They
don’t take time to read the detailed copy before judging your site. They look for the
next actions they can take, based on a quick, visual survey of the page. Good visual
design is essential for making sites that people want to use.

The warmth and emotional context of a site come from the visual design. How you
choose to portray your content, your use of whitespace and color, and your choice of
typography all communicate what your site is about. Changing the color palette and
typography can radically change the mood of your site. Visual designers are the people
who will create this at-a-glance communication.

Page Types
There are several different types of pages to design for in a web application. The most
obvious is the home page. On the home page, you want to summarize the purpose and
attraction of your site. There are commonly two versions of a home page: one for people
who have logged in and one for people who are just visiting (see Chapter 13). A lot of
undue attention gets focused on the home page—it is an important page, just not the
most important page. A home page for people who are not logged in acts as an adver-
tisement, showing off the functionality and content of your site. An important aim is
to get people to sign up for your site. In Chapter 18, I’ll show several examples of home
pages to help you decide which one might be right for your product.

The most important types of pages are those that represent a person to the rest of the
site and those that host the her content. There will be tens of thousands of each of these
pages on your site, and they will make up the bulk of your traffic. Spend time on these
pages and iterate them gradually. These are the pages your members will regard as their
own.

There are also two additional groups of pages. The static pages contain your help text,
guidelines, API notes, and terms of service; the actual application pages are the forms-
based pages that drive your site. The static pages are easy to deal with. Many resources
are available to help you design flat pages of content. From a design point of view, the
application pages are the most difficult to get right. These pages are tied to the code
base once you have launched, and they have multiple paths and error states. A
thumbnail flowchart is very helpful in documenting the flow of application pages (see
Figure 4-9). Quick pencil sketches of each page can indicate which pages will need a
full design and which can be created from a combination of elements. Chapter 7 ex-
plores the benefits of lightweight prototypes versus full graphical mockups.

‡ http://websiteoptimization.com/speed/tweak/blink/

Design First | 47

http://websiteoptimization.com/speed/tweak/blink/

Figure 4-9. Message board software as a thumbnail wireframe representing page state and return
paths in an application; the curved lines show the page returned to after performing the action

Forms in HTML can be difficult to do well, particularly when adding elements or ex-
planatory text between form elements. It is worth having face-to-face discussions with
the frontend developer, visual designer, and product owner before settling on a layout.
In particular, be sure to explore the cost of changing or adding elements to a design.

The Amazon payment process is a good example of a complex forms-based application.
It has changed quite a lot over the past five years, and it alters its behavior depending
on whether you have ordered something from the site in the past. Several years ago,
the Amazon site would always take you through all five stages of the order process.
Now it will note your preferences from previous purchases and will give you the option
to alter any detail from an order confirmation page. This reduces the number of pages
you need to navigate from five to two or three, in most cases.

Search is also an area that can become complex very quickly. Many people adhere to
the idea that a good search interface is one with many fields and buttons. Clever choice
of default fields to search can simplify this radically. Chapters 7 and 16 explore search
in more depth.

Designer Roles and Team Approaches
Designers who can write valid HTML and CSS are preferable, but first and foremost
they need to be good visual designers. Designers inhabit a complex world. They need
to wrangle with color, space, and typography, but they also need to design for appli-
cations. Ideally, your designer will be able to produce HTML and CSS pages rather

48 | Chapter 4: Creating a Visual Impact

than Photoshop JPEGs, but if not, he must at least understand how his design can be
implemented in CSS across the main browsers. If he produces visual designs that require
your frontend developer to spend days writing CSS, the product lead needs to assess
the resulting complexity, which can be difficult or impossible to implement in CSS
across all browsers. The frontend developer will have enough work ensuring browser
compatibility across CSS and JavaScript. Note that some frontend people do just want
the Photoshop file, but that does not obviate your designer from thinking about the
CSS implementation as well.

Visual design approach

Different teams work in different ways. The web application company 37signals focuses
on team collaboration tools and espouses a strong stance of getting the visual design
done first and the code done second. Apple uses a similar approach (see the sidebar
“Apple’s Design Approach”). However, these approaches can often be the wrong place
to start. We all have preconceived ideas of what makes something work visually, so we
can get stuck debating color and font choice before we have worked out what the site
should be doing. If your team has not agreed on the basic functionality of your site,
you may end up debating surface issues and not understanding the underlying problem
you are attempting to solve for your readers.

The 37signals and Apple approaches work for different reasons. In the 37signals case,
with its “No Functional Spec” (http://www.37signals.com/svn/archives/001050.php)
and “Interface First” (http://gettingreal.37signals.com/ch09_Interface_First.php) arti-
cles, it is easy to miss that the site is about the user experience, not the visual design.
A preferable approach is one that avoids documenting human behavior, and instead
focuses on creating experiences for humans to assess. Make something that is func-
tional, not a (non)functional spec, to paraphrase the Apple and 37signals philosophies.
This is a good idea, but first you need to get to the place where you know what you are
attempting to build. In Chapter 7, I will introduce you to the service functionality
diagram, which is a one-page document that you can use to get a basic understanding
of what the new feature or service should be doing.

Apple’s Design Approach
As we discussed briefly in Chapter 3, Apple has a seemingly novel way of working. It
uses its 10-3-1 model to develop desktop software and interface elements for its oper-
ating systems. The basic model is a three-phase approach. During the first phase, it
creates 10 fully worked-out interfaces for the new product or feature. These are entirely
separate interfaces, not just color variations. Then, following a review, it creates 3 new
interfaces using the best of the previous 10. Finally, it creates the final interface using
the best elements of the three designs from the second phase. This approach allows
Apple to find many different solutions to the same problem.

Alongside this, Apple runs a pair of important meetings that drive the project process.
On a weekly basis, it has an open ideas meeting where people can suggest new ideas

Design First | 49

http://www.37signals.com/svn/archives/001050.php
http://gettingreal.37signals.com/ch09_Interface_First.php

for the current project. Later in the same week, the team gathers for a business meeting
to assess current timelines and integrate new ideas.

This combination of exploratory design and rapid integration of new ideas produces
products that feel cohesive and appealing.

At Apple, these are mainly internal discussions. The company rarely uses focus groups
or consultants, so the process it uses is exploratory, looking at different ways to im-
plement high-level functionality. The Photoshop files resulting from Apple’s 10-3-1
model are both the functional spec and the interface.

Design-led approaches might well work for your company. They can certainly give you
a quicker sense of what the application might feel like compared to the more traditional
approaches.

Software design approach

If an interface reveals that the backend solution is lacking after the specification has
been written and developed against and the interface has been polished, it can be ex-
pensive to fix. Developing the backend solution first often leads to a very data-centric
view of the world, in which the user interface is there to provide the controls to the
database. The person using the site is not the primary focus of the site. The users should
be driving the application, not making decisions based on the need to fulfill parameters
for a database function call.

Wireframes approach

A halfway house in design terms is often the wireframe. Wireframes present a complex
mix of the content, layout, and functionality of a page. They give a sense of what will
be on the page, but fall short of specifying an actual design. Capturing the content and
functionality is important. Capturing the positional layout can constrain the visual
designer in terms of how he might choose to position the elements.

Wireframes can also be as detailed as a full design, and as a result they can be time-
consuming to produce. The page description diagram discussed in Chapter 7 allows
non-design staff members to communicate what the page needs to do and say without
resorting to wireframes. Lastly, wireframes are often produced by non-designers, so
they tend to replicate existing designs or cram extra functionality onto the same page.

Wireframes fall between two positions: they are not as detailed as a visual design, nor
are they functionally useful. If you feel you must use them, treat them as low-fidelity
designs to be disposed of before launch. A mocked-up prototype is often a better choice.

Sketching approach

Sketching on paper or whiteboard is a final way of working to figure out the high-level
structure of your site’s design. This approach holds to the same principle as the design

50 | Chapter 4: Creating a Visual Impact

first approaches. You want to understand the problem quickly and not build something
ill-founded and expensive. Writing code is costly, inflexible, and time-consuming.
Sketching out the basic interface on paper, then sharing it and amending it face to face
with designers, developers, and product management is a rapid way to explore proto-
types. I have used this approach a lot, and it acts as a good replacement for informal
wireframing, but you can miss important details with this approach, as it is rarely based
on real examples. I would recommend it as a first approach to determining the flow of
interaction in your application.

When doing design work, it is important to use real example copy. If you encourage
the use of “Lorem ipsum” as a stand-in for real copy, you can miss details regarding
how real people will interact with your site. This is also true if you repeat the same piece
of real copy throughout the site. Make sure the product or editorial people on your
team supply the designers with plenty of well-thought-out sample copy. This process
will also help the product people solve potentially hidden problems. Generating this
sample copy prompts the answering of many issues related to sourcing the content or
understanding the roles involved in managing an item of content. An example might
be a designer being supplied with dates for events—one case might have a range span-
ning many months, whereas another might have only a few weeks. The different time
ranges will suggest different product and design solutions. Only when you get real
sample data will you know which date range is going to be the common case. This
upfront preparatory work will create a better product. The same is true in software
testing, as we will see in Chapter 16.

Copywriting
As first mentioned in Chapter 3, the copy (descriptive and functional text) on your site
matters, too. Getting the language right is critical, but too often it is left to the designer
or the developer to sort out the details. What you label things matters to the user, which,
by the way, is a dreadful word, but (so runs the joke) is commonplace in software and
drug dealing. I have tried to avoid the word user in this book as much as possible. It is
easy to make similar mistakes in the copy for your site. For some good examples, look
at the language used on the sites referenced in this chapter.

Copywriting, interface design, and software development run hand in hand, but come
from different people. Agreeing on the right language is important, and deciding on the
copy often helps you understand the problem at a more fundamental level. It can make
sense to agree on the copy before or in parallel with the detailed design work. Depending
on the size of the site you are working on, you might have a single person whose role
is to write the copy, or you might have a team working on it. Finally, all the copy on
your site needs to be written from the point of view of a person using it. Therefore,
explain and explain again. Make the language simple and clear, not gimmick-laden or
too cute. From the main pages to all the help and recovery pages, it is important to get
the copy right.

Copywriting | 51

37signals has an excellent book, Defensive Design for the Web (Peachpit
Press), that you might find useful when writing copy.

Summary
A good visual design for your website will help you to clearly communicate what your
site is about. Web application design shifts the task to making templates that respond
dynamically to what people on your site are doing. Hiring good visual designers who
understand how their designs will be implemented makes the design work easier.

Understanding what you are going to build and then starting with a full visual user
interface or a solid prototype is generally the fastest way to deploy a site. Save writing
the code until you understand what you are making and how it will be used. Lastly,
make sure you have your site’s audience firmly in mind; think about the site from their
perspective and use language and examples from their lives.

52 | Chapter 4: Creating a Visual Impact

CHAPTER 5

Working with and Consuming Media

The world is already full of ways to produce content and form relationships. From the
means of communication to the tasks people perform, contexts are created that people
are familiar with. Each new website sets out to change, replace, or add to these means.
If we fail to recognize these existing ways of doing things, we will set ourselves up for
failure.

In this chapter, we’ll explore how to positively engage with the status quo. We’ll start
by looking at media generation and consumption, and then at some examples of how
people have developed sites to tap into the underlying human motivations that are
present in all of these interactions.

Media Types Affect Consumption Styles
People consume content very differently depending on the media and the context. If
you look at books, music, magazines, and films, you’ll see that there are many different
formats and types of publication. For example, music can be a public activity (played
as background entertainment at a party or in a crowded setting at a concert), or a
personal experience (heard through headphones in an office setting). Movies are his-
torically a social experience, watched with other people and discussed later; but today,
while most people don’t go to the cinema by themselves, some might watch a film at
home on their own. Reading materials tend to offer a more personal experience; people
may sometimes share and/or lend newspapers and magazines to others, but reading
books tends to be a personal activity.

From this quick analysis, you might draw some broad conclusions regarding media
consumption styles. People engage with longer forms of media in a different social
manner than they do with shorter forms: news, music, and magazines are shared at or
near the time of consumption, whereas books and films are shared after consumption.
Table 5-1 summarizes these ideas and introduces a breakdown of the shared object.
Most types of media are shared socially and consumed personally, but usually one style
is dominant.

53

Table 5-1. Media consumption patterns

 Access pattern Consumption Modality Dominant pattern

Web Non-linear By page Digital Personal

Music Non-linear By tracka Digital Personal

Movies/films Linear Entire work Digital and analog Social

Books Linear Entire workb Analog Personal

News Non-linear By story Digital and analog Personal

Magazines Non-linear By article Analog Personal
a Many people listen to albums in their entirety.
b Factual books are slightly different, as there is no plot per se, but consuming them as a whole is still relevant.

A significant element in terms of consumption style is whether the object is digital in
nature. Of course, an online story is easier to share with a wide group of friends than
a printed story, as you can share the online version with people not in your physical
proximity. Digital objects are also much easier to gather data for. For instance, Apple’s
iTunes music software tracks which songs you have listened to from your collection.
It is hard to imagine an easy service for paperback books that does the same thing.
Although you can obtain reviews on a book you’re interested in purchasing from Am-
azon, you’ll have no idea whether the reviewers actually read the book or are decorating
their bookcases with it. Stepping away from media, many hobbies are inherently non-
digital, such as climbing and gardening. However, some of them you can track; for
example, you can carry an altimeter and GPS unit to track your weekend hikes.

Returning to the length issue, smaller discrete elements, such as a story or a music track,
work better online than something with a stronger narrative, such as a complete novel
or a film. What we can summarize from all this is that consumption patterns differ
radically: a single song by a music artist works well on the Web, but a book is harder
to work with, and it takes much more time to consume an entire book than it takes to
listen to a track on a CD.

Plots for books, films, and television programs present another issue. Spoilers can ruin
a community experience if, for instance, someone reveals without warning important
plot details to a person who has not yet seen the episode. Discovering “whodunit”
separates the audience into two groups: those who know and those who don’t. This is
not an issue for music and is not relevant for most other printed and online media.
Breaking news is also different, because a constant stream of new information is what
is being delivered.

Analyzing Consumption Patterns
The differences in consumption patterns radically affect the kinds of online experiences
you create for the people you want to attract to your site. A site for people who read
books that mimics the behavior of a music site such as Last.fm would not work that

54 | Chapter 5: Working with and Consuming Media

well. Similarly, a site based on the Flickr photo-sharing website would not work for
music sharing, as most people do not create music for public consumption in the same
way they take photos. Two key criteria for social media products are that the content
has to be digital in nature and the consuming or creating device can easily be connected
to the Internet. A CD player is digital, but an iPod or a digital camera is digital and
connected.

You need to assess what people are actually doing in the space in which you want to
build a product. They may be using a competing online product, but if possible, look
past this and examine what they are doing in terms of social relationships and current
activities.

As I mentioned in Chapter 4, the term social object, coined by Jyri Engeström (who
founded Jaiku and now designs social infrastructure at Google), has recently gained
prominence. A social object moves the emphasis in social applications away from the
action or the person and toward the combination of the object and its owner. To il-
lustrate, the file 23489356408.jpg is a specific picture, Gavin Bell is a specific person,
but Gavin’s picture of Oscar’s birthday party is something much more meaningful. If
we add a date and more contextual information, it moves from being only a picture to
something that is rich in meaning. Figures 5-1 through 5-3 show this migration as a
single element becomes a social object.

Figure 5-1. Oscar’s birthday party—an isolated picture, 23489356408.jpg

Media Types Affect Consumption Styles | 55

Figure 5-3. Oscar’s birthday party with more context—now a social object, including responses from
friends

Engeström describes conversations in the same light. The interesting aspect of the
interactions that occur on Dopplr, Flickr, Jaiku, and Twitter is that the conversation
happens around an identifiable object. For Dopplr it is a journey, for Flickr it is a

Figure 5-2. Oscar’s birthday party; this now becomes part of a bigger “picture”—a page

56 | Chapter 5: Working with and Consuming Media

picture, and for Jaiku and Twitter it is short messages. The conversation does not focus
on the people first, or on the photo or the message; it focuses on both.

On Last.fm, the social objects are the music tracks that people have been listening to.
Here the social object is not even annotatable. What is relevant is the aggregation of
songs that a person has listened to. These individual songs combine with the person’s
identity to generate a view of her music tastes. For example, http://www.last.fm/user/
gavinb gives a pretty good portrait of my music preferences. In fact, it’s better than the
portrait Amazon provides regarding my purchases.

If you publish your own content and host a community on the same website, there is
an additional set of relationships to consider: those between the members of your
community. Most people will simply participate passively in the community by buying
the publication or the media. These people form the main part of the non-online pub-
lication world; we normally refer to them as readers of newspapers or books and so on.
You’ll also have to consider the relationship between your staff and the active com-
munity members, something we’ll look at in the next chapter.

These more passive people form the majority of any audience or media-based engage-
ment. The figures vary, but between 80% and 90% of the visitors to your site will come
in, look, and leave. A small minority will contribute content. This is often referred to
as the Pareto principle or the 80:20 rule. Derek Powazek notes the importance of this
in community endeavors:

That’s not to say that the 80% aren’t important—they are. Without them, there’d never
be those 20% of writers. It’s the balance that’s important. Everyone gets to be treated
like kings.*

On social community sites such as Flickr, participation levels are higher than typical
message boards, though this tends to mean more active visitors rather than a higher
rate of activity per visitor. The people who are simply reading the content are vital;
without them, content creators would go elsewhere. They are the audience; they pro-
vide the traffic that observes the content that the 20% are making.

Collecting Consumption Data
Social objects require a unique identity, which is usually a single URL for a single object.
I’ll discuss URLs in much greater depth later in the book, but for now, it is important
to understand the one-to-one principle regarding URLs. Having a URL for an object
means you can refer to it and track it. You can use the object’s behavior to aggregate it
with other objects. Every object will, by definition, have an owner, so we can show all
objects from a person or all new objects from your friends. Facebook’s Mini-Feed does
exactly this.

* http://8020media.com/blog/2006/07/why_8020.html

Media Types Affect Consumption Styles | 57

http://www.last.fm/user/gavinb
http://www.last.fm/user/gavinb
http://8020media.com/blog/2006/07/why_8020.html

Collecting data on all of this activity is vital. Amazon is probably the most famous
company in this regard. It collects data on every page you visit and then bases recom-
mendations on the aggregated data it has collected. This is like the salespeople in a
bookstore who note every book you glance at, which might get annoying quite quickly
but is transparent and painless online. The seemingly passive readers on your site can
give you all of this data for free. They can tell you what your most popular stories,
people, or tags are. In Chapter 16, we’ll explore how to capture and process this
information.

Bradley Horowitz wrote about Yahoo! and its Yahoo! Groups product and came up
with slightly different numbers to the 80:20 ratio, breaking community interaction into
three categories:† 1% initiate, 10% respond, and 100% benefit from these activities.
Depending on which system you look at, the figures will vary a bit, but the approximate
ratios will not change that much. This is also true in the offline world; think of how
many people read a magazine or newspaper and don’t recommend any of the articles
to anyone, let alone write about them to the editorial staff.

Media Evolves and Consumption Styles Change
This is a good juncture at which to look back at the media world. Newspapers have
changed the most rapidly among the main publishing endeavors. The similarities be-
tween the creation of a web page and the writing of a news story have helped. Some
newspapers, such as the Lawrence Journal-World in Kansas andthe Guardian in the
United Kingdom, have taken community to heart and have reached out to bring their
readers onto the newspaper’s website. The advent of online news websites has even
driven newsroom consolidation in such mainstream broadcasters as the BBC.‡

“comment is free”
Meanwhile, newspapers and magazines such as The Economist, the New York Times,
the Guardian, and a host of others are exploring podcasting. Commenting and blogs
are now becoming part of the standard newspaper website, and this is where the public
reader interaction occurs.

The Guardian was an early adopter of this online interaction and decided to place the
majority of its comment and opinion pieces in a blog titled “comment is free.” The title
comes from a quote by CP Scott, founder of the trust that runs the paper: “Comment
is free, but facts are sacred.” In its initial form, “comment is free” showed some weak-
nesses that can occur when strongly worded opinion pieces are left open for
comment.

† http://blog.elatable.com/2006/02/creators-synthesizers-and-consumers.html

‡ http://www.bbc.co.uk/pressoffice/pressreleases/stories/2007/10_october/18/reform.shtml

58 | Chapter 5: Working with and Consuming Media

http://blog.elatable.com/2006/02/creators-synthesizers-and-consumers.html
http://www.bbc.co.uk/pressoffice/pressreleases/stories/2007/10_october/18/reform.shtml

Shortly after the “comment is free” blog was launched, Nico
MacDonald discussed the weaknesses identified its initial form in an
Online Journalism Review article titled “‘Comment Is Free,’ but design-
ing communities is hard.” The paper has since addressed many of these
weaknesses (http://www.ojr.org/ojr/stories/060817macdonald/).

These weaknesses are common to many social software applications. The most fun-
damental weakness was the fact that a person’s comment was not linked to his past
comments because of the lack of a common profile page. This is a core tenet of social
software: there must be an easy means of being able to establish a person’s context by
looking at his past output. The absence of a profile page allows mischievous people to
agitate in one direction one day and in another direction the next day. Profile pages
give stability to a community by providing identity. Bulletin board software offers pro-
file pages, but they fall short in that they do not list a person’s recent comments.

“comment is free” had one other significant issue: the people who authored the articles
were not obligated to respond to any of the comments they received regarding their
articles. However, some authors chose to respond to comments by writing another
article.

Timothy Garton Ash analyzed this issue in “Mugged by the blogosphere – or how to
find nuggets in a cyberswamp,” at http://www.guardian.co.uk/commentisfree/story/0,
,1819020,00.html. He read all of the comments left on one of his posts and was confused
by the experience. He called for a profile page so that he could figure out who some of
the people were. While Garton Ash’s desire for a profile page for each comment author
is justified and an important feature for a cohesive community, there is another issue
underlying the “comment is free” community: the authors of the original comment
article rarely respond to the comments left on their articles. When launching a com-
munity site, it is vital to engage with the people coming to your site; if you or your
authors keep themselves apart from your community, you can generate ill feelings.

The Guardian deserves praise for launching “comment is free” as a post-moderated
forum in which comments are published first and then flagged for review if they are
deemed inappropriate by readers, as opposed to a premoderated forum where every
comment is read by staff members before publication. After all, opinion articles are
usually written to evoke a reaction. By launching “comment is free,” the Guardian was
able to tap into this energy and attract a regular, if opinionated, group of people from
across the globe. This endeavor has strengthened the Guardian brand and encouraged
similar community projects at other media publishers.

The basic response to reading an opinion piece is to agree or disagree. By providing a
forum for this to happen, the Guardian is addressing a need that exists outside the
online world. It is allowing its readers to connect with other like-minded people who
read the paper, as well as attracting people who disagree with the paper’s general stance.
This was not easily possible before the Internet. Local papers in the United States have

Media Evolves and Consumption Styles Change | 59

http://www.ojr.org/ojr/stories/060817macdonald/
http://www.guardian.co.uk/commentisfree/story/0,,1819020,00.html
http://www.guardian.co.uk/commentisfree/story/0,,1819020,00.html

already provided a forum for discussion, but the Guardian was one of the first national
papers to do this widely and without requiring a Guardian journalist to read every
comment prior to its publication.

Amazon: Reader Reviews Encourage Purchases
Amazon is a good example of how to build social software, particularly around books.
(It now sells many other products, but its core offering is still arguably books.) Amazon
has progressively added features that allow its book buyers to comment, rate, review,
and list the books they like and dislike. The main social element on an Amazon page
is the rating system, which is used across the site as an indication of the relative merit
of an item. The rating comes from the people who have written a review of the book
or DVD. People can add a 1–5 rating for a book or DVD and write a longer review if
they desire. Figure 5-4 shows the rating system, Figure 5-5 shows other titles based on
previous visitors’ viewing habits, and Figure 5-6 shows the reviews of a DVD.

Figure 5-4. A product page on the Amazon UK website, showing the community-generated five-star
rating for the Firefly DVD release

60 | Chapter 5: Working with and Consuming Media

Figure 5-5. Related titles based on customer viewing habits

Figure 5-6. Customer purchasing habits based on aggregated data and some of the reviews for the
Firefly DVD

Amazon then layers additional functionality on top of the rating framework. For in-
stance, all the reviews can be rated on how helpful they were, and this information can
then be aggregated onto the page for the reviewer. The rating of the review may even
impact a product’s overall score. Reviews can be anonymous, or the reviewer can be

Media Evolves and Consumption Styles Change | 61

identified by name from a validated credit card. Anonymous reviews can obviously be
written by anyone, and in 2004 the real names of some anonymous reviewers were
accidentally displayed on Amazon’s Canadian site, revealing that a raft of authors had
written glowing reviews of their own books and sometimes less glowing reviews of
competitors’ books.§ (Of course, I’d never dream of doing that!) The provision of a real
name builds a sense of reviewer trust. It is possible to see that the reviews that are rated
more highly come from people who have left a real name. The majority of the
Amazon.co.uk top 50 reviewers, for instance, are identified by a “Real Name” badge
(http://www.amazon.co.uk/gp/customer-reviews/top-reviewers.html).

So, how does this relate to the basic process of reading books? It taps into two funda-
mental desires: people want to help others, and they want to feel knowledgeable. A
review of a book saying that it is good for novices but runs out of steam if you are
experienced is very helpful if you are starting a hobby. A detailed review of a book
showing the book’s flaws or correcting its mistakes allows the writer of the review to
feel on par with the author, or at least to show his expertise.

From Amazon’s point of view, reviews allow Amazon to determine which books are
likely to sell well. The company can use the aggregated reviews and sales figures to
determine which books are best for a particular genre. Amazon took a long-term ap-
proach to developing the site and did not look for an early profit. This meant it had
time to build up the reviews and ratings for the books in its catalog. Amazon has almost
every book in print, including new releases. It has gained something else as well: it is
the de facto place to look for a book review. Amazon may not always be the cheapest
place to buy books, but it has arguably become the library for the Internet. It allows
other merchants to compete on price (via Amazon Marketplace), which adds credence
to this argument. A recent Forrester report mentioned in the New York Times‖ showed
that 52% of people who shop online do their product research at Amazon. So, that
means more than half of online shoppers use Amazon to figure out what to purchase.
Amazon also launched one of the first affiliate stores on the Internet. In later chapters,
we’ll explore how Amazon has become a part of the Internet, not something that is
merely hosted on it.

New Services Respond to Evolving Needs

Music
In the 1980s, music came from LPs or tapes, and there was no way to automatically
track via a computer which song you were listening to. So, a list of the songs a person

§ The article “Amazon Glitch Unmasks War Of Reviewers,” at http://query.nytimes.com/gst/fullpage.html?res
=9C07E0DC1F3AF937A25751C0A9629C8B63, covers the details of the accidental display of anonymous
reviewer names on Amazon.

‖ http://www.nytimes.com/2008/01/05/technology/05nocera.html

62 | Chapter 5: Working with and Consuming Media

http://amazon.co.uk
http://www.amazon.co.uk/gp/customer-reviews/top-reviewers.html
http://query.nytimes.com/gst/fullpage.html?res=9C07E0DC1F3AF937A25751C0A9629C8B63
http://query.nytimes.com/gst/fullpage.html?res=9C07E0DC1F3AF937A25751C0A9629C8B63
http://www.nytimes.com/2008/01/05/technology/05nocera.html

had listened to over the course of a week would have had to be produced laboriously
by hand. Today, the Compact Disk Database (CDDB), now known as the Gracenote
database, holds track listings for virtually every CD produced, and provides the lookup
service behind most online music services. Gracenote was generated by volunteers who
entered into the database the track listings for CDs they were listening to, and it is now
one of the unsung early Internet-driven collaborations. The magic glue that Gracenote
provides allows any computer in the world with an Internet connection to give the CD
or MP3 file playing on it a much richer meaning. Gracenote gives every track published
a unique identifier, which means new services can be built on music that people are
playing. This was simply not possible before the Internet existed. These catalogs of data
are a key foundation, allowing social interaction around objects that are not native to
the Internet, such as films, television programs, books, and, indeed, music.

These new services exist in different forms, from music sales to playlist management.
The Apple service iTunes, along with the Apple iPod, is the leader in the sales field.
The iPod is deservedly ahead in this market, and I’ll discuss its merits in a subsequent
chapter. iTunes is a very successful store (see Figure 5-7), but it also enables other
behaviors. For instance, it offers recommendations if you shop from the store, and it
shows you the relative popularity of songs. This helps to drive Apple’s sales.

Figure 5-7. Radiohead in Apple’s iTunes desktop software, showing the iTunes store

Last.fm takes a different approach to monitoring what music people are listening to.
The data tracked from songs listened to on iTunes is aggregated onto a profile page,
which other people can see. The critical difference between iTunes and Last.fm is the
public data aspect of Last.fm. With Last.fm, you can add friends to a social network

New Services Respond to Evolving Needs | 63

http://en.wikipedia.org/wiki/Gracenote
http://en.wikipedia.org/wiki/Gracenote

and discover other music via recommendations based on what people are actually lis-
tening to. There is a similar function in iTunes, called the Genius Sidebar, but it is based
on private data.

Both services rely on data from Gracenote. They add commercial or social services on
top of the basic behavior of people listening to music. Last.fm collates millions of actual
tracks that real people have listened to, all of whom have profile pages. So, it gives a
unique view of the musical tastes of many people. Last.fm has also created a global
version of the conversations that people have about music, and has enabled interesting
new behaviors, for example, Last.fm archives your listening habits so that you can see
which bands you are into at the moment and how your tastes are changing. Last.fm is
satisfying the desire to share tastes and explore new artists, if not the actual music for
download.

Photos
Flickr originated as a side project from a gaming company called Ludicorp. The inven-
tory management tool for the game was repurposed to become a photo-sharing appli-
cation. However, what Ludicorp initially launched in 2004 is radically different from
the service you’ll see on Flickr today. The idea of a persistent photostream with unique
URLs for photos and comments was not in the initial launch, nor were other key
features such as tags and groups. The fact that Flickr launched without these seemingly
key features is not the important point. What is key is that the company behind Flickr
worked hard with its new community and generally delivered new features as people
demanded them (as long as they related to Flickr’s core business).

The advent of inexpensive digital photography equipment is one of the drivers behind
Flickr’s success. Photo-sharing websites have been around since the Web started (e.g.,
Photo.net), but they tended to be aimed at professional photographers. Flickr is aimed
at everyone, and it attracts lots of professionals. Gone are the dusty slides and projector;
today, photo viewing is a communal experience that you can enjoy wherever you have
an Internet connection.

People have an innate desire to explore pictures from around the world, whether they
are of places, people, or events. The structure within Flickr allows for easy navigation
and discovery. Along these lines, the last Flickr feature I want to mention is the inter-
estingness rating for pictures. Flickr uses many statistics to determine how interesting
a picture is, from how many times it has been viewed to how many comments it has
and who commented. Upward of 30 different factors are taken into account to deter-
mine the interestingness of an image. This allows Flickr to show the pictures that have
facilitated a high degree of social interaction.

The photographs are the social objects, and these photographs, along with their ac-
companying comments, become a conversation. The pictures I place on Flickr docu-
ment the events in my life and capture my friends’ reactions to these events. I can also
see my friends’ lives depicted on Flickr. For the people I hang out with, Flickr provides

64 | Chapter 5: Working with and Consuming Media

a catalog of the events we have attended. However, you get these benefits only if you
sign up (for non-members, Flickr is just a lot of pictures). Tags help to organize the
content so that you can easily find amazing pictures of, for instance, the Grand Canyon,
but Flickr only comes to life when your friends are there as well. This is a common issue
with social networking sites.

One popular view is to look at images by tag, which gives you a selection of the best
images identified by a particular term. However, tags can be problematic. For instance,
searching for photos with the tag “digger” will produce pictures of an Australian cat
called Digger and pictures of construction equipment, and searching for photos with
the tag “otters” will produce pictures of otters and a few planes (I’ll continue the dis-
cussion on this inconsistency in the use of tags in Chapter 13). Nonetheless, tags are a
great way to show off the best images, and they encourage people to continue to use
the site, even if they have no images to upload or comments to leave.

Video
Many video services—ranging from the popular YouTube to services such as Vimeo,
Viddler, and Seesmic—allow people to shoot and then upload video clips. These sites
are filled with lots of clips from TV shows, but among those are lots of homemade
videos. For many people, available bandwidth at home is now at a level where video is
a reasonable means of expression. These social services differ from music services in
that a lot more video content is being generated by individuals, whereas music tends
to come from record companies. Indeed, there is a seemingly vast appetite for video
clips.

This harks back to the sense that viewing a video clip, like a movie, is a social experience.
People more frequently call someone over to watch a video clip than to listen to an
audio clip. Even more than with pictures, there is a sense of communal entertainment
with video. Social tools around sharing video will behave differently from those around
music, due to these differing consumption profiles. Music bears repeat listening, for
example, whereas a film tends to be watched once. A Yahoo! research project designed
to explore real-time video sharing is Zync (http://sandbox.yahoo.net/Zync).

New systems for tracking data are coming on the market. I’ve discussed some of the
main ones associated with media, but in your industry, there will be others that are
more relevant. For instance, it is now possible to track energy usage within the home,
using a Wattson (http://www.diykyoto.com/wattson.html), and many more of these new
tracking tools will be developed. Some of them may give you a basis for hosting a
community. A good example is the Discovery Channel’s funding of the Sharkrunners
game developed by area/code (http://www.playareacode.com/work/sharkrunners/).
This game uses real-time data from great white sharks. Players control their own virtual
ships and receive an email when their virtual ship encounters a real shark. It is an
example of the kind of community product that is already possible to create.

New Services Respond to Evolving Needs | 65

http://sandbox.yahoo.net/Zync
http://www.diykyoto.com/wattson.html
http://www.playareacode.com/work/sharkrunners/

A burgeoning area for growth is systems that provide further complete data sets. A
complete data set makes recommendation systems easier to create and content easier
to map to identifiers. There is certainly money to be made in this space. In terms of
geographic data sets, the UK Post Office sells the postal codes database and NavTeq
or TeleAtlas sells satellite imagery of the Earth. There are many other new data sensors
coming on to the market that will enable the creation and extension of new data sets.

If you are making a site that references external media or even something that you
generate yourself, the easier it will be to track, and the simpler it will be to generate
situations for comment regarding the media. The difference between music download
and a paperback could not be starker. With both, it is possible to determine purchase
data; however, without a deliberate effort on the reader’s part, tracking data regarding
the use of the book stops. A song has much more richness in terms of capturing and
aggregating data than making it easily accessible simply by playing a version of it on a
computer. Tom Coates discussed the issues of trackability and identification of digital
objects, describing them as the “Web of data” (http://www.plasticbag.org/archives/
2006/02/my_future_of_web_apps_slides/).

Summary
In this chapter, I showed how you should situate your application in the context of
how people will use it. If the object of attention is clearly owned by someone, it can
become a social object and not just an artifact. You need to understand the position
your site fulfills with respect to the content or industry it is in. If your site is about
books, you need to respect how people interact with and understand books. Many sites
take a personal experience, such as reading books or listening to music, and record the
act of consumption and make that social (or at least available for social interaction and
comment). So, people are still listening to music on their own, but they are sharing the
fact of their listening with others. The aggregate views on these personal data
collections—for example, a person’s favorite artists—provide useful stimulus for social
comment.

Most of the examples I provided in this chapter have the following commonalities:

• A profile page, which represents the person and aggregates his content from the
site into one place. These can be different pages, but the concept is the same.

• A means for the people on the site to find out who everyone is and what they have
created.

• A means of finding the content on the site and a unique reference for that content.

• A means of commenting on or reviewing the unique items of content.

• A means of rating or marking as favorites the items of content.

• A means of finding the content on the site and a unique reference for that content
via a search system and stable consistent URLs.

66 | Chapter 5: Working with and Consuming Media

http://www.plasticbag.org/archives/2006/02/my_future_of_web_apps_slides/
http://www.plasticbag.org/archives/2006/02/my_future_of_web_apps_slides/

Look at the social product you are planning and see which features would fit in your
project. How does the project fit the underlying needs of your audience? What basic,
underlying need to socialize are you meeting? What is your social object? How do the
social objects behave off the Internet? What common interactions happen around
them? Answering these questions before you plan any features or decide on any tech-
nology will strengthen your project.

Summary | 67

CHAPTER 6

Managing Change

’Cause people often talk about being scared of change

But for me I'm more afraid of things staying the same

’Cause the game is never won by standing in any one

Place for too long.

—“Jesus of the Moon” by Nick Cave
and the Bad Seeds

People get comfortable in their routines. When launching or changing a website, you
are asking them to adjust to new contexts and unfamiliar ways of doing things. Even
if a new product clearly offers a better way to do something, people—even those inside
your organization—still may be unwilling to move to that new product quickly. Tech-
nology adoption rates are usually best measured in years, not months or weeks. Because
modifying your website will affect your visitors, your workflow, and your site man-
agement processes, you need to look ahead cautiously as you plan for changes.

Resistance
People frequently reject change, preferring to stick with what they know. Generally,
we like the world to stay the same, and at most we create change at our own pace.
Think of how often you change the shop where you pick up your daily newspaper, your
route to work, or even your parking space or seat on the train. There are many reasons
for this, but the main reason is that some stability in life helps us deal with the rest of
the unpredictability that life throws at us. Imagine being forced to take a new route to
work every day due to unpredictable road or train and problems. The unexpected
changes from one route to the next would disrupt your life and would likely make you
resent the company that was responsible for them.

69

We all have to manage change on a daily basis. A common way to measure these events
is to use life change units. Described in the 1970s by Thomas Holmes and Richard
Rahe,* this approach lists events according to a 100-point scale, with death of a spouse
at the top of the list. However, in relation to developing websites, the following are
more relevant: change in living conditions is rated at 25 points, change in working
conditions at 20 points, and change in work responsibilities at 29 points. Varying how
people do their jobs has an impact on their lives. If you are extending your website into
one that incorporates community, you should bear this in mind for your staff. It also
has an effect on your members; you need to preserve some level of consistency between
versions 1 and 2 of your site.

Different people react to change in different ways. Some groups on your website will
accept changes, while others will oppose them. Most site redesigns or feature launches
will engender some form of negative reaction, so you need to plan for this in the launch
process. People grow accustomed to the way a particular tool or site fits into their lives
and can get upset if it changes suddenly.

The Myths of Innovation, by Scott Berkun (O’Reilly), explains how—
through mismanagement or a failure to recognize the potential of the
product—and why innovation frequently fails.

Schema Theory
Psychology offers some theories that describe more formally how we understand pro-
cesses and situations. F.C. Bartlett developed schema theory in the 1930s (see Remem-
bering: An Experimental and Social Study [Cambridge University Press]). Bartlett
explored how people recall facts from stories over a period of a year since first hearing
them. He deduced from this experiment that we create fairly fixed ideas for how things
work. For instance, we have schema for how we expect a restaurant to operate: res-
taurants have tables and chairs, there is a menu to choose from, and food is brought
out by waiters.

Congruence

The degree of fit between a situation and our schema is termed congruence, so using
the restaurant analogy, a traditional Italian eatery is highly congruent with our ideas of
a restaurant, whereas a Chinese takeout is not, despite the fact that both serve food.
This congruence is important in websites, as it reassures the person using the site that
a familiar situation is unfolding. If you change direction on your users by way of a poorly
crafted addition or by trying to gain an entirely new audience whose needs are different
from those of the existing audience, many people will be upset by the change.

* http://en.wikipedia.org/wiki/Holmes_and_Rahe_stress_scale

70 | Chapter 6: Managing Change

http://oreilly.com/catalog/9780596527051/
http://en.wikipedia.org/wiki/Holmes_and_Rahe_stress_scale

Adaptation

A second aspect of schema theory is change. The schemas that people have can change,
but they do not change quickly; this process is called adaptation. The technology we
use to access the Internet has changed gradually over the past 10 years, from analog
modems to broadband and then to wireless broadband. Similar changes have occurred
with cell phones; five years ago the idea that you’d be able to access the Internet on a
phone-like device was laughable to most people, yet today the iPhone and similar de-
vices now provide a good handheld web experience. Shifts in human behavior have
occurred, too. The commenting that blogging allows on web content has led people to
expect to be able to comment on more traditionally published material from established
newspapers, broadcast, and magazines.

Schema theory gives us a good grasp of how people relate to the world, and it will help
you understand your audience’s expectations of your website. Realizing that people do
not think of the world in purely task-based, goal-driven outcomes is helpful. Much user
testing focuses on these details, and while the results of these tests are important, they
do not tell the whole story. Understanding how your new web application will fit into
the broader sweep of people’s lives is vital. In Chapter 7, we will look at designing user
experiences.

Rate of change

Understanding the processes people use to accomplish daily tasks will ensure a better
chance of a good fit for your project. For example, Mint and Wesabe offer personal
financial management services online, but both depend on three recently developed
key factors: online access to statements; widespread, persistent Internet access; and
probably most important, a high level of trust in third-party online services from com-
panies such as PayPal. Because PayPal, eBay, and Amazon have made online financial
transactions seem more ordinary, it is possible for Mint and Wesabe to move into their
application area. However, until recently, the very idea that you would send your bank
statements to a third party was unthinkable, and for many people, it will continue to
seem odd for several years to come, as people don’t change their habits and comfort
levels at the same rate. This may seem obvious, but when the world is boiled down to
“users” and “non-users,” a lot of these subtleties can be forgotten.

Web Communities and Change
Web communities’ vocal reactions to change are well documented. Here are a few
examples that come from social software development specifically, as opposed to sim-
ply running a website.

Facebook is now a well-known and very popular social networking website. When
launched, it was initially restricted to colleges in the United States, but in September
2006, it opened up to everyone. However, in the run-up to launch, Facebook added a
new feature: the Mini-Feed (see http://blog.facebook.com/blog.php?post=2207967130).

Resistance | 71

http://www.mint.com
https://www.wesabe.com
http://blog.facebook.com/blog.php?post=2207967130

The Mini-Feed took information that was available elsewhere on the site and aggregated
it into one place. So, for example, instead of having to visit the profile page of every
one of your friends, you could see what was happening in your friends’ lives on one
page. The immediate reaction was overwhelmingly negative, as people felt like Face-
book had turned into a stalker’s paradise, even though no new information was being
released.†

The strong reaction that this seemingly innocuous change generated came from two
main misunderstandings (see http://www.uie.com/articles/facebook_mini_feed/ for a
more detailed analysis). First, the Facebook team, who had smaller networks of
friends, used the product in a different manner from their keener users. Hence, everyone
in their network was someone they had a connection to in the wider world. However,
for many Facebook members, friends were a cost-free means of having a large social
network, so people would add anyone to their Facebook. By showing activity from all
of these people, many of whom had been forgotten, Facebook suddenly became a noisy
place full of strangers.

This led to a second misunderstanding: people thought the people in the Mini-Feed
were random strangers, and they worried that their activity was being broadcast to the
wider world. Announcing this change before it happened, and trying it out on a smaller
group of people first, would have revealed these problems earlier. Interestingly, within
a few months, once people had adjusted to what a “friend” now meant on Facebook,
the Mini-Feed became a valued part of the site and of many other social software
products.

Flickr also offers a few examples of resistance to change. A few years after Flickr
launched, Yahoo! bought the company. Unfortunately, Flickr took about 18 months
to transfer old accounts over to Yahoo!, though all new accounts had to be Yahoo! ID
accounts. This long migration from old to new accounts allowed time for dissent to
ferment inside Flickr, so when the final forced migration date of March 20 was an-
nounced, a lot of people were unhappy about the change (see the now locked discussion
forum post for a sense of the dissent, at http://www.flickr.com/help/forum/32687/).
Many people wanted to keep their existing email- and password-based access to their
accounts and did not want to have to use a Yahoo! account. An “old skool” movement
started in reaction to the label Flickr gave to the existing account access mechanism.

The two systems ran in parallel for more than a year, offering the Yahoo! ID access
mechanism as the default, but showing the old mechanism with a link to the older login
screen, branding this as “psst, you must be old skool?” Even now, a year or two later,
people still have “old skool” badges for their avatar images. Dan Rubin built some
templates for creating them at http://superfluousbanter.org/archives/2007/02/flickr-old
-skool-badges/. Figure 6-1 shows an example.

† See the story at http://media.www.easttennessean.com/media/storage/paper203/news/2006/09/11/Viewpoint/
New-Facebook.MiniFeed.Deemed.Creepy.Invasion.Of.Privacy.By.Some.Users-2264243.shtml for more
details and personal reactions.

72 | Chapter 6: Managing Change

http://www.uie.com/articles/facebook_mini_feed/
http://www.flickr.com/help/forum/32687/
http://superfluousbanter.org/archives/2007/02/flickr-old-skool-badges/
http://superfluousbanter.org/archives/2007/02/flickr-old-skool-badges/
http://media.www.easttennessean.com/media/storage/paper203/news/2006/09/11/Viewpoint/New-Facebook.MiniFeed.Deemed.Creepy.Invasion.Of.Privacy.By.Some.Users-2264243.shtml
http://media.www.easttennessean.com/media/storage/paper203/news/2006/09/11/Viewpoint/New-Facebook.MiniFeed.Deemed.Creepy.Invasion.Of.Privacy.By.Some.Users-2264243.shtml

Figure 6-1. Flickr “old skool” badges (from http://www.flickr.com/photos/danrubin/391594808/;
used with permission)

In this case, the problem was not lack of communication, but rather leaving the issue
hanging for too long so that the “old skool” login process became a badge of honor for
early users of the site. Subsequently, when Yahoo! changed the login process for Up-
coming, an event management website, the changeover had a fixed time frame of six
weeks. (Mashable, a web application service provider, noted the change in approach
(see http://mashable.com/2007/04/19/upcoming/). Yahoo! eased the process with a do-
main name change, new functionality, and free T-shirts, giving the community some-
thing else to talk about besides the change in login credentials. This time a lot of the
fuss was from international users complaining that the T-shirts would be shipped only
to addresses in the United States. People will always find something to complain about!

In April 2008, Flickr added video capability to its site. The majority of the community
liked the change, but it was largely silent. The vociferous minority that disliked the
change ran sitewide campaigns and protests, despite the fact that the videos were only
90 seconds in length and were not set to play automatically. Although some people
reacted strongly, the integration of the video feature and the various ways to opt out
of seeing video made the transition much smoother.

The Flickr team extended the functionality in ways that closely match how Flickr works,
treating video as long photos and not video clips. The company maintained the schema
that Flickr is a photo service and the album-flicking behaviors that the site evokes. All
the existing functionality remained the same, but some of the pictures in the photo-
stream have a small Play icon on them. Subsequently, in response to user requests,
Flickr has added tools to restrict the use and display of video in groups, along with
search functionality.

In addition, the Flickr team conducted a private feature release to gather feedback prior
to the public launch. They then used the best of the content created in this beta phase
to show off the video feature and to encourage the kinds of video that Flickr hoped to
get.

Internal Workflow
External visitors are not the only people you need to worry about as you make changes
to your application. Internal difficulties can also arise from changes to your workflow.

The term workflow is often used to describe a sequential process, but in a larger sense
it can include a wide range of things. Every hobby or interest area includes some kind

Internal Workflow | 73

http://www.flickr.com/photos/danrubin/391594808/
http://mashable.com/2007/04/19/upcoming/

of workflow for participation, with vocabularies describing the expectations. For in-
stance, foreshadowing (or spoilers) in a fiction book, revealing parts of the plot before
the narrative does, is part of the workflow for reading. Prior knowledge of the route
during rock climbing will lower the achievement level of climbing from an onsight
ascent to a flash. Understanding the activities in your area becomes important when
you are creating a community around something that is collaborative or has a complex
workflow. Therefore, you should allow multiple entry and recovery points on your
website for varying workflow needs, but have a strong narrative to guide people
through.

Workflow changes when you gain a two-way community, but workflow questions of-
ten go unnoticed in the drive for the site or feature launch. In larger organizations, the
people most affected by changes are often not consulted in the process of development.
They are seen as internal staff members and not the ever-important external user. Even
in quite sophisticated user-centered development approaches, the internal users of the
system are often not represented.

This is puzzling, as these people are not hard to get in touch with; they are in your
office. Sometimes this is exactly the problem: they are invisible, yet in plain sight. When
looking at the scenarios around community software, the internal project team can
often be quite small and closely involved in the development process, focusing on de-
livering the project for external consumption. There can be a larger team sitting along-
side the internal project team, but it can be difficult to get their understanding and
acceptance of the changes coming from the new system, they have already made an
investment in adapting themselves to the old system. Surmounting this resistance is
important so that their needs are accurately represented for the system they will end
up running.

Commenting systems are a key example of where this can be problematic. Typically,
one existing team generates content for a publication using a content management
system (CMS). Then a social software project comes along and adds commenting to
the CMS directly, or attaches comments to the existing articles. It sounds simple, but
all the previous editorial jobs have now changed. Writers suddenly have a responsive
and diverse audience to attend to, not just editors. These changes need to be factored
into the working environment, and time needs to be allocated for the job. The next
step, comment moderation, will raise additional issues, such as who does the work on
holidays, how should escalation of moderation requests through editorial be handled,
and how to avoid libel cases.

These issues should be addressed before functionality is launched, but there are a sur-
prising number of examples where the workflow clearly did not account for how the
Internet operates. For instance, the Los Angeles Times’ wikitorial experiment was a
brave idea. (See http://www.guardian.co.uk/technology/2005/jun/22/media.pressandpub
lishing for an analysis of the story.) The paper took a provocative editorial on the Iraq
war and allowed anyone on the Internet to edit it. However, it did this on a Friday, and
when the external editing shifted the document to pornographic content late on Sat-

74 | Chapter 6: Managing Change

http://www.guardian.co.uk/technology/2005/jun/22/media.pressandpublishing
http://www.guardian.co.uk/technology/2005/jun/22/media.pressandpublishing

urday night, it decided to remove the feature entirely. The Internet runs 24 hours a day
and is accessible from countries outside your own; the staff seemed not to realize that
starting with a contentious topic right before the weekend was poor planning. This is
an extreme example, but there are many others where the change in role, particularly
for the editorial staff, is not clearly defined and communicated.

In the “comment is free” example discussed in Chapter 5, the challenge of keeping up
with anonymous comments created a major disconnect between the experience of the
reader commenting on the opinion piece and the author of the piece: the conversation
separated, and with a few exceptions, the readers discussed articles among themselves.
Several years later, the Guardian has addressed many of these early criticisms, but it
remains a challenge to integrate broadcast-style opinion writing, as it has been done
for years, with personal commentary.

Twitter is bringing these issues to the forefront more frequently, given the ease with
which content can be reused via its API. The technical hurdle is now quite low for
including third-party content from the Internet, but a proper editorial process is still
needed to ensure that you are including content that is appropriate. The Telegraph used
a search feed from Twitter on the 2009 budget day in the United Kingdom, taking every
post that mentioned the hashtag #budget and displaying it on its home page in real time
and unfiltered. The resulting comedy as Twitter users abused the service was short-
lived, but it was a quick lesson in how the Internet can respond to poorly thought-out
attempts at engagement (see http://www.guardian.co.uk/media/2009/apr/21/telegraph
-twitter-budget-twitterfall-embarrassment for further details).

Community Managers
Unless you are already doing community-related work on your website, you are unlikely
to have the manpower to handle such work if you decide to add this feature. Even an
editorially led company does not have the right people on staff for such a task. The
community manager role is not marketing, editorial, or technical in nature. You may
have to fill it from outside the company, although internal staff members can sometimes
do the work. It requires a level head for making judgments and a willingness to talk to
people online.

The community manager is the public presence on the site. This person talks to the
members, reads contributions, and helps set community standards. The community
manager is usually the main moderator on the site, though this person may receive help
from other nominated users (non-staff members) on a volunteer basis. If you have other
editorial teams, you need to ensure that everyone is clear regarding what he is entitled
and expected to do. Traditionally, editorial teams have been the first port of call for
conversations with the community—receiving emails or letters—but the conversations
have largely been one to one and private. Now this responsibility will shift to the com-
munity managers and this community interaction will often be done in public. The
community manager needs to learn from the editorial team and then feed back the day-

Community Managers | 75

http://www.guardian.co.uk/media/2009/apr/21/telegraph-twitter-budget-twitterfall-embarrassment
http://www.guardian.co.uk/media/2009/apr/21/telegraph-twitter-budget-twitterfall-embarrassment

to-day knowledge he is gathering about how your community thinks and behaves. If
this task is ill-managed, it can become a real problem—the company can become two-
headed in the way it deals with the community.

Summary
Change is complex to manage and is inherent to launching a new website or launching
new functionality on a website. Humans dislike not being able to control change at
their own pace, so encourage people to adopt your new tools by understanding what
your community is trying to accomplish. Add new functionality so that it extends
(rather than conflicts with) their existing ways of thinking. Internally, change will create
challenges, too, primarily manifested in terms of workflow management, but also in
the relationships your staff will strike up with their new community. Pay attention to
how you manage this, especially if you have both editorial and community management
teams so that your company can speak with a common voice.

76 | Chapter 6: Managing Change

CHAPTER 7

Designing for People

Building a website that people use socially is quite different from building desktop
software or service-based websites. Desktop software has a model that traditionally
serves a single person to complete a set task. Service-based websites follow a similar
model.

Interaction design provides an underlying methodology that helps to shape social soft-
ware applications with contributions from many other areas. This type of design work
is the main differentiator between applications in a similar area, as there can be many
ways to approach the same task. This chapter will look at how creating social applica-
tions differs from creating other software, and will explain how to run these kinds of
projects. The chapter also explores some new methodologies for creating applications
based on Activity Theory and the social object. The chapter ends with some guidelines
for and examples of designing social applications. It is often said that the quality of an
application is in the details; this is the chapter for those details. Dive in!

A site design is the combination of the site’s content and activity, so
simply copying the design of another site for use in your site will not
work. A real estate site modeled after Flickr, for example, will not work,
even though both would be using photography. Modeling your site after
a “popular site” is not a good starting position: you can borrow subele-
ments from that site, but not the entire site. Being influenced is different
from copying. You need to create the design to understand how to
evolve it.

The article at http://www.37signals.com/svn/posts/1561-why-you
-shouldnt-copy-us-or-anyone-else from 37signals puts it perfectly:
“Copying skips understanding.” Sadly, this is a common bad practice.
See http://www.flickr.com/groups/web_design_ripoffs/pool/ for many
more examples of misguided copying. This is different, however, from
building on a social network tool designed to provide a base. For more
on these, see “Social Platforms As a Foundation” on page 151.

77

http://www.37signals.com/svn/posts/1561-why-you-shouldnt-copy-us-or-anyone-else
http://www.37signals.com/svn/posts/1561-why-you-shouldnt-copy-us-or-anyone-else
http://www.flickr.com/groups/web_design_ripoffs/pool/

Making Software for People
Traditionally, developing software was a very computer-centric process: programmers
had to turn information and the environment into something the computer could un-
derstand. We have moved a long way from this, thankfully, and punch cards and paper
tape are museum pieces now. However, developing social web applications still
presents a challenge, in that supporting the needs and activities of the individual while
fostering community and social interactions means technical solutions are no longer
sufficient. For clarity, social interaction runs a wide gamut, from commenting to an-
notation, chat, uploading pictures, cooperating on tasks, and discussion.

The same problem can be solved in many different ways. A common expression de-
scribing successful sites is “it is all about the execution.” Unpacking this phrase reveals
that it is not computer cycles that are important; it is the social and cognitive aspects
of the relationship between the person, the site, and the community that make an
application “feel right.”

Waterfalls Are Pretty to Look At
A classic model for software development is the waterfall model. The idea of completing
one phase, then the next, and the next one after that until the project is done has an
innate appeal, but it is a poor approach toward solving complex problems. Dr. Winston
W. Royce described the waterfall model in 1970, in “Managing the Development of
Large Software Systems” (http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/
waterfall.pdf). In fact, he raised it as an example of a flawed model.

One limitation of waterfall approaches to software development is that they expect a
division of labor. For instance, Adam Smith (http://www.econlib.org/library/Enc/bios/
Smith.html) noticed that pin manufacturing could be increased if each person focused
on only one aspect, rather than creating a whole pin himself; this was the start of the
assembly line and the segregation of worker tasks. The waterfall approach works when
there is a fixed plan that can be devolved into separate, non-overlapping tasks, but good
software development has to be more interactive than that.

Fixed schedules are another limitation of waterfall approaches to software develop-
ment. For example, waterfall approaches make sense when you are building a house.
The foundation comes first, then bricks, then windows, the roof, and so on. These
activities have a fixed order that is known in advance. Since most software projects are
entirely about making something unlike what came before, you can’t expect them to
follow a fixed schedule.

A simple “build the backend and then stick a user interface in front of it” approach is
doomed to failure these days. Why do I say “doomed”? Just as a builder wouldn’t turn
what should be a kitchen into a living room without drawing up new plans to reflect
the newly intended usage, implementing the backend of an interface without thinking

78 | Chapter 7: Designing for People

http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
http://www.econlib.org/library/Enc/bios/Smith.html
http://www.econlib.org/library/Enc/bios/Smith.html

about how it will be used will lead to similar clashes of functionality versus intended
usage.

What approaches can you use to determine what to build? The field of interaction
design can help you determine the appropriate things to build and how to present them.
The full scope of interaction design reaches from the visual design back to the models
for information storage.

Interaction Design
Interaction design* can help you design software that groups of individuals can use to
describe, discuss, and build on their world. It draws on psychology, groupware design,
collaborative systems design, user-centered design, as well as some of the newer models
coming from human–computer interaction.

Earlier chapters of this book examined the software side and the visual design aspects
of building a site. What is left is the glue that brings those two aspects together. You
can represent visual design in code, just like you can a database schema. The interaction
design is how the problem is represented and the solution is developed. It is closer to
psychology than software development. You need to understand both the motivations
of the people in your subject area and the activities they are trying to perform.

The interaction designer is often viewed as either the person who creates the wire-
frames, or, in some places, the person who builds the Flash applications. Neither of
these descriptions captures what an interaction designer can bring to a project. Many
teams do not have a full-time interaction designer on staff; instead, the role falls into a
number of other disciplines. On smaller teams, for instance, it is frequently part of the
visual designer or client-side developer’s role.

Some teams make the project manager do the interactive design work, though in that
case it tends to be more akin to information architecture wireframing work. The prod-
uct manager might be the closest fit if there is not space for a separate role. Much of
the work of a product manager involves defining the behavior of the application, which
is close to the interaction designer’s role. Having a separate person manage the inter-
action design process while working alongside the people who implement the design
work forces the entire team to reflect on and discuss each feature prior to its imple-
mentation. This can help the team focus on solving the interface problem rather than
simply implementing it, resulting in a better user experience. The polar opposite ap-
proach reduces tasks to line items on a spreadsheet, which keeps the team from con-
tributing to or understanding the project, often leading to problems.

* There are many books on interaction design and many more on usability. Dan Saffer’s book, Designing for
Interaction (Peachpit Press), is an excellent introduction to the area.

Interaction Design | 79

Individuals choose to use social web applications. Remember, the elusive quality of the
user experience, and not the feature spec list, will win people over to your social web
application.

There is generally no company mandate that says this is the web application you need
to use to do your job. There is a high degree of personal choice and variety on the
Internet in virtually every application area.

Identify Needs with Personas and User-Centered Design
User-centered design (UCD) is a persona-led approach that focuses on a known set of
users who can be interviewed and have their needs assessed. Many other definitions
and approaches reflect the breadth of what is called UCD. (The approach I describe in
this chapter is not the only version of UCD that is valid; it is just a common one.)

UCD is a great improvement over the waterfall approach. Understanding and keeping
the needs of your users at the heart of your software project is always a good idea.
However, UCD tends to be used primarily in larger companies, as it can be an expensive
approach if executed to its fullest extent. UCD was developed in the late 1970s; Jared
Spool gives a short history of the origins of the approach on the IXDA mailing list at
http://www.ixda.org/discuss.php?post=33885#comment33966. An early term in UCD
development was usability engineering. There is much disagreement over what consti-
tutes UCD, but a focus on the needs of the user, rather than the needs of the software
system or a specific set of tools, is a good starting point.

UCD separates the product from the preferences of the designer. We are prone to make
things that we would like to use ourselves. UCD introduces the persona to handle this;
each persona represents a core use case for the area you are working in. Behind UCD
is a model that emphasizes the person as an information processor. The model attempts
to determine the needs of the individual and map this onto a set of goals that can then
be implemented as a set of tasks.

A use case is a combination of a thumbnail sketch of an individual who might use your
services tied to a set of tasks he can perform on your site. An example use case might
be Simon, a 27-year-old project manager who is fed up with Microsoft Project. He is
looking for a shared project management tool that his team can use on the Internet. A
persona like Simon might, for example, look at tools such as Basecamp from 37signals.
Generally, personas have a lot more depth to them than just age and role. Developing
personas is a good, fun activity that your team can take part in. The difficult part of
using a persona is ensuring that creating and using it is not just a fun way to spend the
afternoon. Simon and friends need to become an active element in product planning,
and as your product matures or evolves prior to launch, you need to update your per-
sonas. Other common approaches include storyboarding and scenario planning.

80 | Chapter 7: Designing for People

http://www.ixda.org/discuss.php?post=33885#comment33966

Designers and marketing people tend to like personas. Developers often struggle to see
the value in them, but they can be a useful tool in understanding who your intended
users are. If personas are overplayed, they can also take on an unassailable role on some
projects, negating common sense. A persona that is frequently missed is the internal
user, often on your own staff; she is as much a customer of this process as the people
who come to the site. She is also a simple persona to sense-check, as you can actually
talk to her. Personas for social software also need to take into account the social inter-
actions between the people using the site, something that they traditionally have not
included.

Along with the persona, UCD practitioners use a variety of other techniques to elicit
information, including structured interviewing, card sorting, and contextual inquiry.
Their focus is on helping the system designers become closer to the domain experts
who will be using the system. Mike Kuniavsky’s Observing the User Experience (Morgan
Kaufmann) offers a thorough overview and tutorial on many aspects of UCD.

You have many advantages over the people who developed UCD tools back in the
1980s. Before UCD, designers and developers of, for instance, healthcare insurance
packages or hotel management software were generally not well versed in these par-
ticular business areas. Today, in many cases the tools in UCD help software teams
understand the working practices they are automating.

Talking with Potential Users
Most people have no idea what software is capable of doing, so they cannot raise gen-
uinely useful ideas. As a result, you need to approach these people indirectly, and in-
stead ask what they do and why they do those things. From these interview notes, you
can build a composite picture of what your potential audience will want. Henry Ford
is often quoted as saying that people would have wanted a “faster horse” before he
popularized the motor car, suggesting that people find it hard to imagine the real sol-
ution to their problems. This process of researching and understanding allows you to
determine how your product will impact how people are currently behaving. Techni-
ques such as prototyping and sketching allow quick exploration of these ideas.

If the product you are building is something that you are likely to want to use, as is
common with startups, characterizing its features and interaction becomes an easier
problem to solve. In larger companies, or for those who are targeting a diverse audience,
this separation makes product creation more difficult. UCD can help you connect with
people who are different from you. In an agency environment, where there might be a
new client every few months coming from a completely different business area, UCD
is essential. A lot of UCD is about getting inside the user’s head, so if your team com-
prises active users, you can shortcut this process. Often what is happening on the
personal scale is a rapid evaluation and iteration with periods for reflection and un-
derstanding, but these are internal processes. When we move to the wider scale of
building for others, we need to make these processes more orchestrated and systematic.

Identify Needs with Personas and User-Centered Design | 81

Naming Influences Perspectives
You need to be careful to use labels that other people will understand. Many sites make
too many implicit assumptions about people’s levels of understanding. Correctly
capturing and critically assessing these assumptions in the initial planning phase of a
project is key so that prior to launch, you can reevaluate this list of assumptions as a
point of reference before presenting the site externally. The language you use in your
project will become an internal form of shorthand that visitors to your site will need to
learn. What to call things when represented on your site can become a long-running
debate internally, and can influence your users’ perspective. Calling the initial post on
a message board a question as opposed to a topic will encourage a certain style of posting
from the community. Calling the post a question is likely to promote short, direct posts,
whereas calling it a topic would instead encourage more open-ended contributions.

Picking the correct language for your site is a difficult task, as the language on your site
needs to meet many requirements. Short is good, but so is applicability; context is
important, too. Drawing on your community to help you define these requirements is
an essential part of product design (particularly in terms of later refactoring). As a result,
customers are moving into a more active role in terms of product formation.

Common Techniques for UCD
UCD has numerous techniques and approaches. Rather than review every technique,
here are some of the most common:

Contextual inquiry
This is an on-site observational and semistructured interviewing technique aimed
at users to get them up to speed with how your community operates currently. It
is composed of the techniques that follow:

Task analysis
Task analysis is the process of decomposing a high-level task into fine-grained,
single steps to better understand implicit thinking and assumptions. An out-
side expert in the area for which you are developing needs to review the analysis
data for consistency. This reviewer should not have been involved in the task
analysis. Effectively, task analysis involves two reviews: one to assess the task,
and one to check that the assessment makes sense.

Card sort test
This is a process that is intended to discover content and group activities.
Identify content or activities (but not both in the same test) and put them on
small cards. Ask people individually to sort them into as many categories as
they see fit. This test is useful for determining how people see a content area.
This test can also be used to determine activity paths (determining the logical
temporal ordering of a task).

82 | Chapter 7: Designing for People

Focus groups
These small-group focused discussions are helpful for obtaining buy-in with
senior stakeholders and gleaning opinions on product direction. If they are not
well planned, they can result in data that is difficult to analyze or that simply
confirms prejudices. A good moderator will help during these sessions so that
you can concentrate on what is being said.

Usability testing
Usability tests can be run in several ways from formal, one-way or video-based
tests of implemented systems to simple paper prototypes. It is amazing how
people will misinterpret your well-intended designs. These tests are easier and
cheaper to arrange than most people think, particularly with paper
prototyping.

Design consequences
This is a good technique to get beyond the idea that only one person can draw
up the interface. Take a multidisciplinary group, and give everyone the same
design problem and seven to eight minutes to sketch out an interface for it.
Then have each participant pass it to the person on her right, and ask that
person to draw the results of clicking on what she sees as the appropriate link.
(See Leisa Reichelt’s post at http://www.disambiguity.com/design-consequences
-a-fun-workshop-technique-for-brainstorming-consensus-building/ for more
details on her technique.)

These techniques are really important, and you can use them anytime and as often as
you like throughout the project, or anytime you are developing new functionality. Some
companies see this as a task to be done only once during the life of a project. That is
not true—you can come back to it again and again.

Running Interaction Design Projects
UCD will help you develop a model of the requirements of the different people coming
to your site. The process develops a lot of internal documentation from personas and
the various task-based approaches. You can run UCD projects in different ways; some
of them take a “design upfront” approach, and others are more iterative in their style.
The more iterative approach fits better with agile methods, but it depends on the scale
of the project. Agile is a software development practice that emphasizes working code
rather than copious documentation. The focus is on iterating in short cycles with
working models—“design upfront” is better than “code upfront” in most cases. Build-
ing a suite of code without an idea of the final user interface (or needs) is a recipe for
disaster with a social web application.

A larger UCD project can take on a life of its own, almost becoming a full project prior
to your building the actual application. UCD projects frequently deliver fully fledged
wireframes, which can seem like mockups for the actual application. There is much
discussion on UCD mailing lists regarding whether showing this output to clients is a

Running Interaction Design Projects | 83

http://www.disambiguity.com/design-consequences-a-fun-workshop-technique-for-brainstorming-consensus-building/
http://www.disambiguity.com/design-consequences-a-fun-workshop-technique-for-brainstorming-consensus-building/

good idea because the output can look like unfinished site designs, even though it is
valuable work. If you are an agency building sites for other companies, you will have
an in-house approach to this problem. If you are an internal team, these documents
can be important tools to get better engagement with other people in the company.
Later in this chapter, we’ll look at other document types like interactive mockups.

A key difference between wireframes for websites and wireframes for
web applications is that the application can have multiple implementa-
tions and actually has functionality, whereas a website tends to be sim-
ply read.

Reaching the point where you have a good model of the people, objects, and activities
that your site will represent means you can settle on a user interface. Determining what
people can do and designing how it looks on-screen can occur simultaneously and is
best mocked up as an interface to allow those actions to occur together.

Using Agile and UCD Methods
UCD and agile development methods can seem to operate in opposition if you allow
them to run their natural course. Agile likes rapid iteration; UCD generally likes long
time periods for research and then a firm plan. However, some practitioners are more
flexible in their approaches. Today, a guerrilla UCD movement is in full swing, with
practitioners viewing UCD as a tactical tool and a long-term analysis tool.

UCD and agile development methods are not impossible bedfellows, but both require
careful management and introduction. Leisa Reichelt, among others, has talked about
the washing machine model for doing interaction design in short bursts alongside and
slightly ahead of agile sprints (http://www.disambiguity.com/waterfall-bad-washing-ma
chine-good-ia-summit-07-slides/). The work is led by the interaction design, and the
user interface design work informs the software development work. This approach feels
like a natural extension of how small teams work and draws on the open source idea
of “ship early and often.”

As noted earlier, one of the main drawbacks to the waterfall approach is the inflexibility
and the single big launch. Developing an application a month at a time with a release
each month means you can try things and course-correct if you make a bad move.
Combining this with interaction design work means you can intelligently react to your
community. Grand plans over multiple quarters look great on a Gantt chart, but they
mean you are often building the product you think your audience should have, rather
than the one they really want.

Typically, these Gantt charts are tied to staff availability and a firm product launch
date, so there is very limited or no flexibility. The common approach is to aim for 100%
and then cut features if it looks like you’ll miss your deadline. Also, product planning

84 | Chapter 7: Designing for People

http://www.disambiguity.com/waterfall-bad-washing-machine-good-ia-summit-07-slides/
http://www.disambiguity.com/waterfall-bad-washing-machine-good-ia-summit-07-slides/

done in August, resulting in a launch in April, means you are building the product that
was appropriate eight months prior to launch. Big features do take time to create, but
linking several big features together into a monster release is rarely a good idea. This
approach also tends to stifle any experimentation and testing along the way.

Aim for small, regular releases. Work up to 100% with a functioning product; don’t
leave yourself with half a product and gaping holes because you started something too
big that then had to have major pieces cut from it.

Getting agile and UCD to work well together requires some flexibility from both the
designer and developer teams in terms of language and sharing common documents,
which might have previously been private. Having both teams working in the same
building—ideally in the same room—helps. It makes conversations easier and allows
the background social interaction to develop. A lot happens in a company that does
not take place in a meeting room or through email. When your teams are physically
separated, this type of communication can’t happen easily.

If this is not possible, at least have your teams meet regularly so that these personal
relationships can develop. Rather than working in isolation and handing finished work
to one another, designers and developers should work hand in hand and make live
prototypes that can be used with test subjects. This process tends to bring developers
on board with the product at an early stage, and avoids designing features that are
impossible to implement.

The popular JavaScript library JQuery includes an excellent plug-in called PolyPage
(http://24ways.org/2008/easier-page-states-for-wireframes), which is a great tool for
creating interactive wireframes that handle state well. All social applications have a
logged-in state, a logged-out state, and many others. This plug-in helps you to automate
state changes while allowing you to keep a single mockup page for each actual page in
the application (rather than having four files corresponding to four different states in
the application). Using this tool is a great way to bridge the gap between design and
development.

You do not have to start out with a grand plan; instead, you can build the system in an
iterative manner, which seems like common sense. It is easy to lose sight of this in a
larger company, when work goes to “design,” and then to “development,” and before
you know it you have a waterfall. Hard discipline boundaries are unhelpful, and they
are one of the advantages that small startups have over larger companies, as there is
not another project to get assigned to or to compete for staff within a startup company.
Also, in a startup company, there is likely to be more overlap between roles, as there is
no budget for an interaction designer, an illustrator, a usability consultant, and six
different types of software developer.

Planning a site does take time. Rushing the planning phase so that you can start writing
code means you will most likely have a poor understanding of what you are making. If
you take the line item approach, you are likely to have as many views of each item as
there are people on the project. Ten features and 10 people likely means perhaps 100

Using Agile and UCD Methods | 85

http://24ways.org/2008/easier-page-states-for-wireframes

different viewpoints on how the application will operate. English is an imprecise lan-
guage, compared to software code, in which every word has a single meaning. A brisk
planning phase is also likely to lead to a feature-led, rather than a person-led, design
approach. The features rack up without a thought as to how they will integrate, each
one lost in a set of written requirements documents, a situation that is sometimes
known as creeping featurism or carbuncle design.

Taking the time to create visual mockups of each feature means there will be less am-
biguity in terms of what is being built and how it will operate. The balance between
static mockups in Photoshop and functional prototypes made from HTML and CSS
will depend on your team and the project, but try to avoid the “home page as Holy
Grail” school of design. There is one home page, but there are thousands (or millions)
of content pages, so spend your time making the content pages shine—the home page
will evolve. The search engines of the world will know the content pages just as well
as they know the home page; many more people come in via a content page than via
the front door.

Even a quick hand-drawn sketch communicates a lot and can be quickly iterated. Many
social applications start out on a sheet of paper or a whiteboard, as shown in Figure 7-1.

Combining agile and UCD methods requires some flexibility and a clear understanding
of expected or assumed roles and responsibilities, plus an acceptance that some work
will be thrown away. Iteration will mean some dead ends and the need to reassess some
decisions. In fact, it can be more strongly stated that unless you have found some dead
ends and thrown away some prototypes, you probably have not found the best design
for your application. The psychology term confirmation bias is used to describe people’s
tendency to notice evidence that supports their initial point of view. Exploring several
prototypes helps you move past your bias.

A good ground rule is that code should not be developed unless the design has been
prototyped. The behavior-driven design approach also supports this model of working,
as you determine what should be happening in response to user interaction rather than
building features.

Beyond UCD
UCD is far from the only approach to help you decide what to build, but it is one of
the most dominant. As noted earlier, UCD came from the computer-driven cognitive
psychology models of the 1980s. Understanding how we process information in specific
situations was helpful; it lifted our interactions with computers from text-based inter-
faces to graphical ones. Focusing on the goal and decision-making aspects, however,
kept the focus task-based. Today, there are much richer interaction models that we can
support, and tools to derive them.

86 | Chapter 7: Designing for People

Figure 7-1. Stat.us, the original concept sketch for what became Twitter (http://www.flickr.com/
photos/jackdorsey/182613360/; used with permission)

Beyond UCD | 87

http://www.flickr.com/photos/jackdorsey/182613360/
http://www.flickr.com/photos/jackdorsey/182613360/

HCI and Information Architecture
Cognitive psychology overlaps with the wider discipline of human–computer interac-
tion (HCI), which sits between computer science and psychology. Cognitive psychol-
ogy is not the only area of psychology that offers a means to develop applications,
however. There is much to be explored in the areas of social psychology and other social
sciences. One of HCI’s early influences came not from psychology, but from
architecture and design. Information architecture took thinking from urban planning
and the work of Kevin Lynch (The Image of the City, The MIT Press) to help understand
hypertext information systems. Hypertext is the now-seldom-mentioned term used to
describe some of what the Web represents. The idea of links within text taking you to
other pages is much older than the Web, which dates from about 1990. Hypertext ideas
date back to Vannevar Bush and the memex in 1945, through Ted Nelson in the 1960s,
and to academic work in the 1980s and 1990s. (For more information, see the ongoing
ACM Hypertext conference series at http://www.acm.org.)

Information architecture describes how information is organized so that it is relevant
to different user populations. Formal organization of information is the main tool set,
but library science has contributed a lot. Controlled vocabularies, taxonomies, and
formal descriptions of content as objects give a solid handle on large amounts of con-
tent. These tools are really useful if you are publishing the content yourself, but if the
content largely comes from your community, it is hard to get people to effectively use
taxonomy (Chapter 13 explores this in more depth). The navigation aspects of infor-
mation architecture are very useful for getting a sense of which pages act as
thoroughfares.

Information Architecture for the World Wide Web, by Peter Morville and
Louis Rosenfeld (O’Reilly), is a great book on the topic of information
architecture.

UCD works with information architecture to produce a site. User experience design is
a good term covering both areas. Jesse James Garrett’s book The Elements of User
Experience (Peachpit Press) gives a useful frame of reference for the overlap of visual
design, interaction design, information architecture, and product strategy. His initial
work is eight years old now, but the idea of separate layers has stayed with the industry
(http://www.jjg.net/elements/pdf/elements.pdf). One point to note is that a pure UCD
and information architecture approach to building web applications can miss out on
the social interactions between individuals. The intraperson interactions are impossible
to capture on a sitemap, and a goal-based approach can miss out on the social aspects.
On the next few pages, we’ll look at some other models of design.

88 | Chapter 7: Designing for People

http://www.acm.org
http://oreilly.com/catalog/9780596527341/
http://www.jjg.net/elements/pdf/elements.pdf

The Craftsman Approach
Dan Saffer coined the term craftsman to describe the experienced designer who works
with little traditional UCD research to back herself up. Compared to many other com-
panies, Apple does little external research, and it doesn’t use focus groups. It does have
a very coherent model of what each product should do, which often includes a clear
picture of what is extraneous. This means that Apple is not actively engaging the pro-
spective purchasers of its products, instead it’s designing for them. Apple is very con-
cerned with proprietary boundaries, and as such, it rarely makes its design processes
and iterations public. Instead, hard work behind closed doors produces the iPod or the
iPhone. Developing products without reference to the customer is hard to pull off con-
sistently. It requires tremendous talent and discipline, and very few companies can do
it time and again.

However, due to budget constraints, many of us work in a similar manner. Making
something that you would use is the goal. In open source software development, this
is known as “scratching your own itch.” A craftsman will use his skills to create things,
and hopefully he makes things that are useful to himself or his friends. Customer re-
quirements are immediately obvious, and people tend to make things within their
knowledge and ability. For instance, Basecamp from 37signals came from a project
management tool for managing client work; Last.fm came from a passion for music
and a desire to find new things to listen to.

With this approach, you’re designing for a core problem or experience, so you need to
be clear in communicating this. You need to be aware that additions will muddy your
message and potentially obscure the value of your product, which in turn will mean
people will be unsure of what you are offering.

The farther away you move from your core interests, the more likely you are to go astray
with this approach. Designers can be led into a case of “designer knows best” if there
is not genuine knowledge of the subject. Their prior design experience can lead them
to falsely make assumptions about how another community behaves.

Another argument for the craftsman approach is speed, as conducting a series of UCD
studies means you are spending time understanding and not building. For some teams,
this seeming lack of activity is too much, and they will push on to the build phase as
soon as possible. The risk in pushing on is that you may end up building the wrong
thing through lack of understanding. Rapid iteration of code and swift progress from
prototype to application are possible with frameworks such as Ruby on Rails. This
rapid iteration and visible prototypes can give a sense of real progress, but unless you
have a good idea of where you are heading in terms of the overall user experience, this
development can be a direction-less wiring up of blocks of code, leaving the interaction
style and experience ragged.

Small iterative prototypes allow you to make progress while not committing to a long-
term plan. You can run tactical UCD projects in the month before development and
then use them to adjust what you are making each month. In large companies, this style

Beyond UCD | 89

of working becomes more difficult, as staff members are allocated to other projects,
and getting the right people at the right time becomes increasingly complicated. This
leaky information management as staff members move in and out leads to a weakened
product vision and can result in poorer products.

Software development is sometimes thought of as a production line, though it doesn’t
happen in a factory. It is best seen as a series of bespoke work, each piece unique and
tailored, perhaps made from some common patterns, but each cut to fit.

A common approach to software development and interaction design
is the use of patterns. This is not a formal patterns book. However,
Designing Social Interfaces, by Christian Crumlish and Erin Malone
(O’Reilly), and its companion site at http://www.designingsocialinterfa
ces.com, offers a patterns-based approach to social interaction.

Learning to Love Constraints
Your product should not attempt to be all things to all people. Bespoke products fit
well or suit their surroundings perfectly, but they tend to be designed exactly for that
purpose. The potential that a complex interface such as a desktop application might
have is limited on the Web. Many popular web applications do one thing well and stick
to one approach to addressing a complex area. Constraints are beneficial; although
they can seem to limit your market, they help you communicate what your product is
about and give it coherence. Certainly for version 1, you should pick one approach or
technique for doing things, as opposed to offering a choice. Every time you offer a
choice, you increase the amount of code you need to support and you introduce com-
plexity into the user experience.

The impact of product design changes can be widespread, and supporting mixed modes
of usage adds more complexity than you might expect. This process has what is com-
monly known as a ripple effect. Explore what happens when you change something,
prior to implementing it. For example, adding private groups to an application com-
plicates every page that has to list activities in groups. At first, this might seem like a
simple change, as the group pages are the only pages to which you must add new
functionality. However, you also must consider the personal activity pages, any sum-
mary home pages, pages that list tagging behaviors, and search pages. I’ll talk about
documentation styles that can help to track this later in the chapter.

Do not ignore constraints or, worse, attempt to build elaborate workarounds for them.
These constraints are likely to be known about already by people in the area. Band-
width, privacy, and rights management all impose constraints on how you might decide
to run your project. Establish your constraints and avoid the temptation to work around
them using reams of fragile code or overly elaborate interfaces. It is best to keep your
project simple so that you can quickly communicate it to others, and it is easy for them
to understand.

90 | Chapter 7: Designing for People

http://oreilly.com/catalog/9780596154929
http://www.designingsocialinterfaces.com
http://www.designingsocialinterfaces.com

You can put arbitrary constraints on your project. For example, Twitter, Jaiku, and
Pownce all took different approaches to near-time communication. Twitter does not
support groups or file upload. Twitter is the simplest of the three and at the time of this
writing is the most actively used product. It is simple in many respects: in terms of the
functionality offered, the modes of social contact, and the media types it supports.
Clearly, simplicity is not a negative attribute; in fact, it is far from it.

Twitter has even dropped features. For example, it is no longer possible to see the “with
others” view of a person’s profile, which gave you the view of twitter.com that other
users saw individually, but without the private subscriptions that you did not have
access to. It was like dropping in on a conversation: great for providing context, but
expensive to generate a unique view of every person’s timeline based on the viewer.
Simple products are attractive. Jaiku and Pownce are great products, but the group
aspect of them complicates the interface. Twitter remains the same product from your
iPhone, to your IM, and on the Web. This high degree of consistency across the three
platforms makes it much easier for people to develop a relationship with the medium
they prefer. Consistent interfaces are easier to learn. It takes a long time for Twitter to
make changes to the interface, because it is pays attention to the interface and doesn’t
just add features.

Some of the more challenging constraints tend not to be design constraints; they come
from power hierarchies present in larger companies—the middle managers for whom
your bright ideas are just another project and intransigent IT departments resenting
your step outside the neat world of vendor-supported software. Focusing on the design
problems and using them as a means of persuading senior staff members to add their
influence to your project is a good way to get around these difficulties.

Working on separate hosting facilities and using an external contract staff will allow
you to work around constraints in the short term, but over time, you will need to
integrate with their world, just not for the initial phase. See Chapter 17 for a discussion
of integration issues in larger companies.

Connecting passion to the design and development cycle will ensure that good and true
things get made, as the team needs to make fewer assumptions regarding how other
people think and behave. If you are not in this position—say, you are an agency or you
are working in a large, multiproduct company—find appropriate constraints to hold
on to. Make what you think is the best choice for your members.

Learning to Love Constraints | 91

http://twitter.com

Keeping Experiments Quick
Time is the primary constraint most of us grapple with. BarCamp and Hack Day have
shown that short sprints can produce great results in a couple of days, rather than
weeks. But what you’ll get from this short development cycle are quick applications,
not finished products.

The early phases of a project should be the time for experimentation and rapidly trying
out ideas, not for ensuring that your initial prototype works on Internet Explorer 6.
There is a persuasive argument toward hacking the first iteration out as quickly as you
can, but you should expect to throw a lot of it away. You can create something you can
really test quickly and determine whether you are going down the right path. These
hacks are not the product—they are not even the foundation for the product—but they
can point you toward something of value and indicate that you need to keep looking.

If you have a live application already, creating lightweight user interface prototypes on
top of the live data can be a very useful approach. Chapter 16 discusses how to deploy
these prototypes and the current version of the data at the same time.

Larger companies often get this initial phase wrong: the pace slows, the planning docu-
ments pile up, and no one knows whether the application concept will work, but al-
ready it is becoming fixed in stone. The untested idea is now too expensive to kill. A
quick prototype can provide a course correction early on and save money in the long
term.

“Failing faster” is a good way to describe this process. No one has consistently good
ideas, so you need to try lots of ideas and see what works. It is not easy to maintain
flexibility in large companies so that rapid prototyping or proof-of-concept work is
possible. Getting allocated designers and developers to build something experimental
is often difficult, but rapidly iterating on your initial ideas will pay back many times
over in the mid-term, even if it means not going forward with that particular idea.
Schemes that allow designers to use 20% of their time at work to explore personal
projects can be very helpful for exploring tentative ideas.

Figuring Out the Social Aspect
Choosing and understanding the right social object early in product design is critical.
Starting with the wrong entity or providing insufficient support for interaction around
the object can make your site feel empty or purposeless.

Social objects need to act as hooks for conversations. An early version of Flickr was
based on real-time sharing of pictures. When stable URLs for images and the ability to
comment were added, people were given a means for commenting on what was hap-
pening in their friends’ lives, not just reacting to pictures. The picture was always the
social object, but the support for interaction in the web-based version became much
stronger and longer-term.

92 | Chapter 7: Designing for People

http://barcamp.org
http://hackday.org

The trip on Dopplr, the track on Last.fm, and the bookmark on Delicious all provide
a means for a conversation to continue or to be initiated. Only some of these objects
will bear the fruit of social interaction, but the potential is there for interaction to occur.
However, determining the right conditions for these personal exchanges to occur can
be tricky.

Volume of content, privacy, and detail are three important aspects to pay attention to.
Each aspect impinges on the other. High volume needs a low level of detail. Twitter at
140 words would be much slower-paced than the 140-character limit that Twitter cur-
rently uses. A high degree of privacy means low public volume and the sense of a dor-
mant site. Creating a sense of vitality on your site is important. You want to show the
active accounts, not the dormant ones. Content size (or ease of generation) will influ-
ence the rate of content production, so the appropriate interfaces will change between
a blog and a microblog. Twitter and Flickr have more in common in terms of interface
than WordPress.com and Twitter do.

Subjects, Verbs, and Objects
Social software should feel like a conversation. The Cluetrain Manifesto by Chris Locke
et al. encouraged companies to think about their relationship with the consumer and
engage with them. In a similar manner, sites that hosted content used to put their brand
above that of the person using the site, and some still do. On a social website, the
important person in the relationship is the individual and her relationship with her
content and her friends. Some good advice: get out of the way of your users as quickly
as possible.

Many sites languish in the area portrayed on the left side of Figure 7-2 because they fail
to adequately create opportunities for community interaction that are not directly bro-
kered by the creators of the site. Or the site is too hands-on in terms of community
management. The reach or surface area your organization can present is tiny in com-
parison to the surface area that a community can generate through its own content.
Strongly directed communities that have a high degree of editorial involvement can be
a success, but success depends on how much of an investment you want to make in
terms of time. A high degree of involvement will create something closer to your brand;
less control leads to activity that you are supporting rather than initiating.

Learning to Love Constraints | 93

http://wordpress.com

Figure 7-2. Models of community interaction showing (from left to right) decreasing levels of direct
support from founders and increasing community interaction

Theories for the Future
While researching this book, I came across several approaches that have inspired my
thinking on the design of social applications. Given the shift to a social web and away
from a traditional desktop model, new approaches for thinking about interaction are
essential.

Activity Theory is an alternative model for the way human beings use everyday tools
and process information. The theory starts with the idea that the focus of human
existence is our social interaction; in fact, that consciousness derives from social inter-
action. Activity Theory was originated by Lem Vogoysky and Aleksei Leontiev, and
essentially it focuses on the idea that all human activity is social in nature and by en-
gaging in this activity we are changed by it. An activity is composed of a subject and an
object, mediated by a tool (counting, writing, signage, etc.).

I think Activity Theory is a great new direction in terms of understanding the social
web. The basic model explains humans as social entities that perform tasks, of which
the important tasks are social in nature. Each task has a context and its completion is
not in isolation; the tasks change us (albeit fractionally sometimes) upon their com-
pletion. Every task has a social understanding.

For instance, which aspects of the Flickr site are social and which are individual in
nature? We find that even the task of uploading a photograph, itself done by one person
from a single machine, is essentially a social task; that is, the reason one uploads a
picture is to share it with others.

The concept of the social object is roughly derived from Activity Theory with contri-
butions from Actor Network Theory:

94 | Chapter 7: Designing for People

• Find your object. There should be a primary social object for relationships to focus
on.

• Work out the verbs. What is the activity that the social interaction is hung upon?

• Make it easy to discover new objects and activities. Make it simple to find new objects
and obvious how to interact with these objects. Support a social context.

Activity Theory is more of an orientation for understanding social interaction than a
clear framework for analysis. If this intrigues you, read Acting with Technology: Activity
Theory and Interaction Design by Victor Kaptelinen and Bonnie A. Nardi (The MIT
Press).

Activity Theory has inspired other ideas. Don Norman’s article, “Human-Centered
Design Considered Harmful” (http://www.jnd.org/dn.mss/human-centered.html), sug-
gests that the need for detailed personas has passed and that we should focus on more
generic designs based on the activities being carried out by individuals.

This approach marries up well with an agile “fast and lean” approach to software de-
velopment. Quickly analyze the things your intended users are actually doing and then
make clear design documentation regarding how to match this to an actual implemen-
tation, and don’t worry too much about the individual differences.

The book Thinking in Systems by Donella Meadows (Chelsea Green Publishing) de-
scribes a model of how complex non-linear systems work in the world. It looks at big
issues such as poverty and environment degradation, so you might wonder why it is
relevant to social software design. Much of the behavior in social applications is non-
linear, but is gradually becoming linked via federation and aggregation. The approaches
in this book let you step back from the detail of the specific task and think about the
wider context of the person’s social interactions.

Internet applications are increasingly central to our lives, so we need to design tools
that pay attention to what is important rather than what is plentiful. The Web needs
more intelligent tools to help us filter and understand our environment. Systems Theory
is one approach that can help.

Including You, Me, and Her Over There, Plus Him, Too
Social applications should be filled with people. This means there are at least five view-
points to keep in mind when designing pages:

• The user who is not logged in

• The logged-in user looking at her pages

• The logged-in user looking at other people’s pages

• Potential group memberships

• Admin views

Including You, Me, and Her Over There, Plus Him, Too | 95

http://www.jnd.org/dn.mss/human-centered.html

Historically, UCD has focused on the individual user. Much of the interesting activity
in social web applications comes from the interactions between lots of people. UCD
will help us understand the use for an individual, but we need to look at other techni-
ques to understand the impact of social networks. The primary activity most people
are engaged in on social applications is the sharing of information. Sometimes this
information is entirely public, but often it is restricted to a particular group of individ-
uals. The views in the preceding list show the differences between the owner viewing
her page, a friend viewing that page, and a non-member viewing that page. These are
important to capture early in the design process.

Moving Quickly from Idea to Implementation
The sooner you can create a version of your product that people can give feedback on
the more likely you are to build something small and useful or to decide that the idea
was a bad one and stop work on it.

Larger companies tend to spend a lot of time planning the work, compared to small
startups, which tend to spend more time doing the work. This is an unfortunate artifact
of having shared teams. It is sensible to share a personnel department, but sharing a
development team can be frustrating. Time spent planning is not a bad idea per se, but
if the planning entails busy senior managers discussing detailed written feature lists, it
is likely to be expensive and slow. Most companies do not have enough development
staff, so projects tend to spend a lot of time in the planning phase so that the scarce
developers have had all the “complex” decisions made for them. I’d argue that this is
a false economy.

Earlier I wrote about the line item approach and its negative impact on building great
software. It takes a good imagination to read half a dozen line items and see the same
thing as the person who wrote them—let alone be able to visualize the social interac-
tions between the people on the future site that these features will allow. Much has
been said about the importance of user testing; this first stage is just as important. Time
spent prototyping several possible implementations will generally lead to a stronger
solution than more time spent honing the description of something on a spreadsheet.

By prototyping possible implementations, I do not mean trying out color or layout
variations, or trying different behavior patterns to solve the problem. There are different
ways to get a working design model—from simple paper-based prototypes to interac-
tive mockups to fully fledged products. Each model is more expensive, less flexible in
representation, and more time-consuming to create than the previous one. The right
one for you will depend on the type of problem you are solving and the amount of time
you have. A reasonable guide is the more novel your product, the more detailed your
prototype should be.

The common approach of arguing about a final feature specification in a management
meeting that is then handed over to a design team is weak in comparison. Good

96 | Chapter 7: Designing for People

applications come from trying out many approaches to the same problem, and these
approaches need to be visual and interactive in nature. Allowing design to be explored
is important; however, too much focus on data-driven design can result in visual design
decisions being made purely by A/B testing. This process will create two live versions
of your product and automate the alternation between them so that it is possible to
measure any differences between each approach.

A long planning phase can leave the product manager or interaction designer waiting
for the development team to start work. This pause can lead the product manager or
interaction designer to spend his time generating more ideas. The small, simple idea at
the beginning grows into a richer, more exciting concept, which often gets management
support. Thus, instead of launching a cheap and simple version 1, the team starts
building version 2 before they have even launched the first one. The project then be-
comes too expensive to stop because so much time has been invested in it, but the basic
ideas have not even been road-tested in a simple version 1 launch. Startups rarely get
to this point, as they usually lack sufficient funding to get to the baroque stage without
a launch, though this hasn’t stopped a few from trying.

“Shipping a 1.0 product isn’t going to kill you, but it will try” (http://
www.randsinrepose.com/archives/2006/04/20/10.html).

Early user interface work combined with rapid development, prototyping, and user
testing will quickly hone the application to a smaller size. The best iPhone applications
are a great place to learn about efficient use of interface design. Doing a few things really
well is much better than offering everything poorly.

For instance, imagine that you want to sell a book about wine tasting: you could build
a recommendation service application to sell other books, or you could get a review of
the book and post it on a site.

However, both of these are single, closed tasks; there is no need for a return visit. Think
in terms of a service that will create something of longer-term interest. An example in
this case could be a wine reviewing service. People who buy the book must like and
drink wine, so dip into their ongoing lives. Encourage them to share with other readers
their experiences with the wines they have enjoyed or hated.

Assuming a country-specific service, partnering with a retail chain to run a monthly
tasting, with people coming back to the site to share experiences and opinions, would
be one approach.

Allowing people to create a diary would be another option. Let them rate wines they
have tasted, and use this as the means of generating a recommendation service for other
wines to try. Perhaps you could make the data anonymous so that people can have
private diaries if they wish, but use all the data for recommendation purposes.

Moving Quickly from Idea to Implementation | 97

http://www.randsinrepose.com/archives/2006/04/20/10.html
http://www.randsinrepose.com/archives/2006/04/20/10.html

Local wine tasting clubs could be created from regional readers who are willing to
participate; this way you could generate face-to-face social interactions that will help
facilitate interaction on the site.

The key is to provide something that is not time-consuming for the readers to do, but
that gives more value in return for them. Linking this to the book content and providing
source content for the next edition from the community interaction should also be
effective.

Explaining to Others What You Are Doing
As briefly mentioned in Chapter 3, at some point, you will probably need to document
what you are doing for new staff members or for review. One document that is helpful
is the page description diagram (PDD). This has the benefits of the wireframe in that
it is quick to create and modify, but it avoids the positional bias that the wireframe
brings along with it. A wireframe is meant to be a sketch of how the site might operate,
but too often it becomes how the site is laid out; the position is fixed in the wireframe.
The PDD is an ordered list of the elements that need to appear on the page. It is a
three-column, landscape page with the top left as the most important (or distinctive)
element and the bottom right as the least important element. A final column for notes
is recommended; this is particularly helpful for describing the behavior of the page
elements. A clickable prototype imparts a lot more information, but it is also more work
to create and uses different skill sets. Figure 7-3 shows a sample PDD.

Figure 7-3. Sample page description diagram (http://www.7nights.com/asterisk/archive/2005/04/
page-description-diagrams)

98 | Chapter 7: Designing for People

http://www.7nights.com/asterisk/archive/2005/04/page-description-diagrams
http://www.7nights.com/asterisk/archive/2005/04/page-description-diagrams

Creating Service Functionality Documents
Capturing the overall behavior of a new feature and how it affects the existing func-
tionality is an important task. You can do it by writing and updating detailed documents
of site behavior, but a more straightforward approach is the Service Functionality
Document (SFD) shown in Figure 7-4. This is ideally a single-page document that
summarizes what the new feature will do and who it is aimed at. It should include the
following:

Title
A short descriptive title that emphasizes functionality.

Aim
Describes why the application is being created and includes the justification for it.
Only one aim is allowed.

Goal
Explains what needs are being addressed. It is more task-based than the aim is.

Assumptions
Lists all the assumptions being made for the product.

Out of scope
Lists what the functionality will not do, and is as important as what it will do.

Who will use this
Identifies the main groups of people who will use the functionality.

Tasks
Lists the actual tasks being implemented and a description of the functionality.

Context
Any supporting information that is required.

Navigation
Thumbnail of any logic flow in the application. This is useful for error states and
completion screens.

Connections to other SFDs
Lists any other SFDs that are affected by changes in this functionality.

Short, one- or two-page documents are more likely to be read and revised than anything
that is four to five pages in length. The example in Figure 7-4 is a version I have used;
the information it captures is the important thing, not the specific layout. Feel free to
take these and modify them as you see fit.

Calculating Content Size
Determining the right amount of content to request for an object on your site and the
granularity at which to model it is classical information architecture work. You want
an amount of detail that is meaningful, but that also carries value. Twitter has shown

Moving Quickly from Idea to Implementation | 99

value in 140 characters, and people become quite chatty on Twitter. It encourages a
somewhat terse style of language. The blog post, now more than 10 years old, has for
many people become a less common way of expressing themselves. There is a definite
attraction to the microblog style of writing. Blog posts take time to write, and the

Figure 7-4. Sample Service Functionality Document; this document attempts to capture what is
happening in a new piece of functionality and the impact on the rest of the site

100 | Chapter 7: Designing for People

constant interruptions from attractions on the Internet, work, and family life mean
there is seemingly less time to actually write. Anecdotal evidence on Twitter indicates
that microcontent has led to a drop in blogging and an increase in continual partial
attention (CPA). Linda Stone described the CPA affliction in 2005 (http://radar.oreilly
.com/archives/2005/06/supernova-2005-2.html). We are bombarded with information
and the continual drip, drip of content only makes us hungry for more.

In the 1950s, B.F. Skinner ran some experiments on pigeons, giving them a pellet of
food in response to pressing a bar. He altered the rate of delivery so that some pigeons
consistently got one pellet for every press, some got one for every 5 presses, and some
got one after a random interval of between 3 and 10 presses. The pigeons in the last
group took the longest time to stop pressing the bar after they stopped receiving pellets.

The social application update cycle (and email) is very similar to the Skinner experi-
ment. It is impossible to know whether there will be some content for you when you
check your favorite application. If you make the content size small and deliver it often,
you will mimic the behavior of the B.F. Skinner pigeons, which can be good for your
application, but you may also irritate people by encouraging them to check constantly.
A natural part of human nature is to monitor and check. There is a trade-off, however,
as people have a limited capacity for this monitoring. Failure of some social applications
can be partly due to frequent checks that return valueless information.

Yet, there is still a need for a format to encapsulate significant thoughts and experiences.
Filtering tools are becoming vital as we are all generating items of content from our
interactions with the world.

Don’t Let Your Users Drown in Activity
Imagine you follow 150 people, each tweeting two or three times per day on average,
creating about 400 updates per day. You don’t need to read all of these updates, but
reading none of them misses the point of being part of Twitter. Scale this up to using
half a dozen social software applications and you have a lot of data being pushed to
you on a daily basis. Add email and meetings, and you end up with a lot of items to
attend to. A whole field of study is devoted to the so-called economies of attention.

Social applications generate a lot of information. In early 2009, Facebook and Friend-
Feed both began offering a real-time river of activity of your friends on their sites. The
Activity Streams initiative (http://activitystrea.ms/) is attempting to allow this kind of
activity streaming as a more commonplace service in the future. Behind all of this con-
tent lie the activities on your site. What verb describes the actions that your application
allows? Posted/listened/commented are all represented now. In Chapter 16, we’ll look
at collective intelligence approaches to filtering and making sense of this volume of
data. A more commonplace means of doing that is a simple search.

Don’t Let Your Users Drown in Activity | 101

http://radar.oreilly.com/archives/2005/06/supernova-2005-2.html
http://radar.oreilly.com/archives/2005/06/supernova-2005-2.html
http://activitystrea.ms/

Implementing Search
Search often comes last on the list of things to design and build; it’s almost an after-
thought. Two factors contribute to this: it is hard to build a decent search interface
when you have a sprinkling of test content, and the common, visually led design ap-
proaches focus on pages you can navigate easily. Search is likely to be an area of the
site you revise often, sometimes completely replacing the functionality.

Search is one of the common first places for new visitors to a site to explore. This is
particularly true if these new people arrive without a defined social context and some
people to interact with (see Chapter 18 for ways to counteract the blank-page feeling
that some sites create). Search is actually highly context-based, too. The search you
offer people who’ve not yet signed up on your site will be different from the search you
offer site members. A search for people is very different from a search for events; in
particular, how the results are displayed will vary a lot. People who are members will
see their social network represented in the results, and the results for each person can
be a compound result showing a summary of their content contributed or their recent
activity. Table 7-1 shows the variety of search types across four different social
applications.

Google is not the perfect example of how to do search. Google is trying to solve a really
tough problem: how to provide a generic interface to thousands of different types of
people. Hence the minimal interface and plain results listings. You don’t have Google’s
problem; you generally have a good idea of the types of people using your site, plus you
have another advantage: you can tell the difference between an event and a person on
your site. Internet-wide search engine providers have very little information regarding
the types of content they are indexing.

Table 7-1. Search in social applications showing the variety of content types and potential results

Site Default content Results type

Dopplr Single search interface for places, people, trips,
tips, and questions

Specific results for each type of content

Twitter Two separate search systems for people and
content

People and Twitter messages on different pages

Flickr Photos and video List of content as thumbnails, with many options to reorder
listing and advanced search

LinkedIn Separate searches for people, jobs, answers, inbox,
and groups

Specific listings for each content type; advanced search
available

Using the different content types that inhabit your site is a great way to improve your
search tools. In the Nature Network site I discussed in earlier chapters, my colleagues
and I created separate indexes for our content types: people, publications, forum topics,
events, and blog posts. By using separate indexes, we could represent each search result,
correctly showing the time and date for an event and the thumbnail for a person.

102 | Chapter 7: Designing for People

Initially, we kept the searches local to each content area: if you searched from a forum
page, you got results corresponding to forums and navigation supporting your starting
context of the forums. However, this meant we missed out on a sitewide search. Later
we added an elsewhere feature that showed the search results matching each of the
other content types (see Figure 7-5). This meant we could add a sitewide search.

A subsequent revision will likely replace the Ruby on Rails custom search tools that
were created with a specific search product such as Solr. This evolution of search prod-
ucts is quite common. If the design decision to support context-relevant search early
had gone the other way and produced a Google-like plain search list, it would be hard
to retrofit. Plain lists tend to homogenize content and behavior.

Figure 7-5. Nature Network search for “chemistry” showing the main results for the forums, but also
the matches across the site in the “Matches elsewhere” section

Member-Specific Search
Member-specific search is important on any site with private information. There will
be a pool of information that is available only to the person conducting the search. You
can add this information into normal search results or create natural interfaces for
browsing this content. The activity stream is simply a search for the recent activity
relevant to one person, when looked at from a search point of view.

On top of this, and based on that person’s previous interactions with the site, the search
results can be ranked by relevance specifically for the person. Not every site needs to
support person relevance searching—for instance, it doesn’t make a lot of sense on an
A–Z listing—but in most places considering the individual in the search will be helpful.
Basing this on previously viewed content would be one approach: personalized search
is a mix of recommendation algorithm and search; run the search and then weigh each
returned element against known liked content or types of content. If you have a model
for the interests for a person, using this to filter the content makes sense. Make sure

Implementing Search | 103

the reasons for filtering are evident. You do not want to create an unmanageable black
box.

Advanced Search
The perils of advanced search are many. Every project seems to immediately throw up
a need for an advanced search capability. There is a seemingly special content type or
requirement that means a simple search box cannot reflect the true complexity of your
glorious content. I’d argue that this is usually the wrong starting point, with the ex-
ception of time-based searching. The more you can make the simple search useful and
meaningful in terms of results, the better your application will be. Make an excellent
basic search, and then let people modify the search results. Prompting them to use an
advanced search as a near default means that generally you have not done an adequate
interaction design job.

Sometimes you do need to offer an advanced search, and despite what I said in the
preceding paragraph, advanced searches can be very useful, especially with time-based
content. Offering text-based shorthand for regular advanced search users is a real bo-
nus. For example, the web page at http://search.twitter.com/operators shows a range of
operators that you can use to modify a basic search on Twitter. A small array of useful
options is better than many edge cases. As always, when it comes to interaction, simple
is better.

Understanding Activity and Viewpoints
I believe activity is a great point of view from which to look at how social software can
develop. However, determining the appropriate frame of reference from which to work
can be difficult. Recently, I used non-fiction books as an example in a talk I gave at the
O’Reilly Tools of Change 2009 conference. I wanted to explore how to extend the
relationship beyond the simple book sale. An obvious idea is to get readers to review
the books they have purchased, but this suffers in two respects: people do not buy
books directly from publishers, and a review is another closed activity, like purchasing.
Reviewing makes a lot of sense as an activity on a site such as Amazon; it continues the
relationship post purchase and can lead to further purchases. The situation is different
with a publisher, however, as the publisher has a more limited repertoire from which
the person can select.

Furthermore, there is a difference between those who buy books and those who have
read the books they bought. If you have read a particular book, you have something in
common with the other people who have read that book, and perhaps you have a desire
to meet and share ideas or experiences with them. The publisher can work with this
difference, as it is a subject specialist in this area. Having read the book, the reader will
be able to perform different activities. So, by building a product to support these new
activities and the potential social relationships that spring from them, the publisher

104 | Chapter 7: Designing for People

http://search.twitter.com/operators

will be able to create a longer-term service, one that supports an open-ended relation-
ship rather than one ending in a purchase receipt.

This open-ended aspect is vital. Focusing on making money too early can result in a
closed relationship that simply ends at the sale. Making money is important, but build-
ing a longer-term relationship that can result in multiple sales is a better position to be
in. People in their teens and 20s also expect an immediate two-way relationship. Pro-
viding a service that supports this kind of two-way interaction means people have a
reason to come to you to extend their enjoyment of the subject.

Make sure you focus on the viewpoint of your actual audience or user population, not
on the one you think you have or wish for. Then build out an activity that is a good
match for this group of people.

Recipe Books: An Example
Over the past few years, if you had been developing a website aimed at people who
cook, you would have built different products as the swing from retail to community
took place. Here is a thumbnail sketch of how these sites might differ from one another:

Version 1
Encourage further book purchases based on books other people bought that were
similar to the ones you bought (the Amazon model). This is a good approach, but
it’s impersonal.

Version 2
On the site, offer the ability to list the books the current user owns, to discover
people with similar likes and dislikes. This adds a personal layer on top of book
sales. It implies that people have a profile page on your site.

Version 3
Extend the profile page and allow people to list the recipes they have cooked. Let
them list and rate specific recipes and modifications they made to the recipes. This
shifts the model from being purely about books to being about cooking and people.

The shift from the book as an indivisible entity to the content within the book is im-
portant. The content size becomes more granular thanks to better URL mapping and
more content coming online in the examples.

The second shift is the move from aggregating everyone to personal curation of content.
This seems like a small shift, but it is the start of a social rather than a retail product.
The image site FFFFOUND! allows users to put any image from across the Web into
a collection. You can then get pictures recommended to you based on the pictures from
other individuals which you have liked. An interim model for book lists might use
ownership as a proxy for recommendations in a community. A current model for cook-
books might use the actual recipe cooked, referenced from the page number in the
book. Each version gets closer to the real activity the person is performing. Most

Understanding Activity and Viewpoints | 105

cookbooks sit on shelves; only a few recipes are used from each one. Finding the actual
recipes cooked and making recommendations on them could be more interesting.

The cooking sketch is probably enough to start making a prototype using a couple of
authors and some friends. Nothing further should be done until the workflow around
the recipe to web transfer is understood. How would you best get the event of cooking
a recipe out of the kitchen? It might be best handled as an application on an iPhone or
similar handheld device. Other questions then flow: what about recipes from the In-
ternet? How might duplicates be handled? Taking this idea to a prototype stage will
help you to understand whether there is a real product here or whether this is just a
flash-in-the-pan idea.

Remembering the Fun
Social applications are not work; they are often useful, but this is not the same thing,
so you need to make the experience of using them enjoyable. A term from the hotel
industry gives the right context: delighter. These are pleasant surprises that appear in
your room on your second or third night, or perhaps on a repeat visit. In web applica-
tions, they make the sustained interaction with a site more satisfying, as it retains the
air of discovery. The logo on the Dopplr site changes depending on where you are
traveling to; the scrunch noise and tiny explosion when you delete some items in Apple
applications and the scroll wheel zoom on Google maps are additional examples of
delighters.

Remembering that your community is there out of choice and not out of obligation will
help you create the right tone. Building something that is enjoyable and satisfying to
use makes people more likely to stay. Kathy Sierra (http://headrush.typepad.com/) de-
scribes it as the “I rock” experience. Applications should make the person using them
feel good first, not think that the product is good first.

Twelve Ideas to Take Away
Here are some product creation guidelines that I covered in this chapter. Think of them
as a framework for planning the interaction within your application; a quick takeaway
to keep your application on track:

Understand the activities people are doing
Do enough research so that you understand the area for which you are creating a
product. Use limited documentation to ensure a shared overall understanding of
what is being built at a high level. Make sure you capture the activities people want
to do as well as what they are doing.

Use personas to shape product creation
Use personas to ensure that you address your users’ needs and not what you think
those needs are. Also consider storyboarding as an approach.

106 | Chapter 7: Designing for People

http://headrush.typepad.com/

Create prototypes as part of product planning
Do not just write documents when planning your product; make prototypes and
test them with people who might use your product. Documentation is rarely up-
to-date, whereas a prototype is actually used.

Create a visual design before implementing any code
Agree on the look and feel of a product before the bulk of the backend code is
written. In particular, agree on the actual language to be used on the site pages.
This means you agree on what is being created. Ensure that the backend code is
realistic and possible.

Plan your URLs as part of the product design process
Every page should have an agreed URL or URL template before code implemen-
tation work commences. Every URL for an item of content or a person should be
a pretty URL, one that is short and meaningful. No URL should change once it has
been published.

Build the smallest thing you can
Focus on doing a few things well, rather than many things poorly. Solve 80% of a
problem, rather than dealing with every possibility. Simple, clear applications are
much easier for people to explain. This means the number of users of your
application increases through word of mouth. Small applications are also easier to
maintain, and cheaper as well.

Launch with an API and RSS feeds
A social web application should have an API so that people can build other prod-
ucts that work with your application. Let them provide alternative interfaces or
additional functionality; focus on doing a few things well. RSS feeds let people
easily move their content onto other places and platforms. People, tags, and con-
tent, as well as the site, can all generate RSS.

Link people to content and to one another
Ensure that the content is clearly linked to the person who contributed it. Provide
contextual prompts to encourage response to this content. Support weak and
strong ties between people on your site: weak could be comments or Twitter @re-
plies, and strong could be a subscription-based following of others.

Build on top of other people’s components and services
Use components such as OpenID and OAuth to simplify the experience for others,
but also use other services such as Get Satisfaction for support or Fire Eagle for
location management. There is no need to implement all of these services yourself,
though make sure you can handle downtime on these services.

Release regularly and make iterative changes
Once you have a live product, pay attention to feedback and make gradual changes
in the direction you want to take the product. Flickr added permalinks and Twitter
added @replies due to feedback Can you imagine either site without those features
now? Regularly updated products are responsive to community needs, even if they

Twelve Ideas to Take Away | 107

are not delivering what the community is asking for most loudly. Flickr took a long
time to deliver printing; Twitter took a long time to deliver stability.

Scale when you need to
Technically, scaling is difficult, expensive, and time-consuming. If you do it too
early, you will have hardware sitting idle or you will launch late. If you do it too
late, you will have downtime and angry users. Build as much of your site to work
in an asynchronous manner as possible. Return the results to the actual person
viewing the site and make the rest of the updates later. Alongside the need for
asynchronous design in terms of interface, there is the size of your audience to
consider. If you build to support stadium-size audiences, your site will feel empty
at launch. On the other hand, if you build tools to support interactions with a
handful of people and you try to support thousands, your site will feel unmanage-
able with this volume of content. You will need to revise your site design and
interfaces as your community grows. The carefully crafted interface you launch
with will not be the one you have a year later.

The Web is not the only interface
Do not design your site exclusively for the Web. Mobile devices such as the iPhone
and application interfaces such as Instant Messaging and email are perfectly ap-
propriate mechanisms for interacting with your product. Too much focus on the
Web can shut out these audiences from using your product. Dopplr shows that
iCal can be a great interface for showing who is visiting your home city. SMS, IM,
and email can work perfectly as a command interface to your content once the
identity of the user has been confirmed.

A baker’s dozen gets you one extra, and we can’t leave out search:

Support search as a primary task
Search interfaces are tricky, despite the seeming simplicity of Google’s interface.
Everyone has a different set of advanced search needs, and determining which
content should be searchable in different contexts also draws out differing opin-
ions. Determining a good default set of information to search will help, as the earlier
section on search showed this is very site-specific. Providing search results in con-
text so that the information is presented meaningfully, rather than a simple plain
list, makes your site a lot more usable.

Summary
Building social web applications requires that you try to understand your community’s
needs and desires, and what might make your new product central to their lives. It
should operate in a social manner, creating objects for social attention and interaction.
Building a small and focused product with clear mechanisms for social interaction is a
good starting place. Assess your potential application. Does it have a core social object
and a means of interaction around it? If not, go back and think again.

108 | Chapter 7: Designing for People

CHAPTER 8

Relationships, Responsibilities,
and Privacy

People inhabit social web applications, and as a host, you become responsible for their
interactions. Chapters 7 and 15 explore how to build for the individual and manage
the unruly whole. This chapter pauses to look at the role you will be taking on as site
owner or manager, and some of the situations you will need to consider for features
and API design.

We Are in a Relationship?
Looking back to 2000, there were few sites in which the site owner had more than a
transitory and often commercial relationship with the people visiting the site, let alone
the ability to establish a persistent relationship with them. There were plenty of exam-
ples of web communities then, as Derek Powazek’s 2001 book, Design for Commun-
ity (Waite Group Press), demonstrates, but they were not the dominant form on the
Web. Sites such as Photo.net and MetaFilter.com were starting to show how interper-
sonal relationships on a website might be realized.

Until recently, the idea that you might integrate your audience and your content was
strange, regardless of whether you were a company, a newspaper, or even a celebrity
(e.g., Stephenfry.com). Many companies do not want this relationship made obvious,
or are reticent about including their community directly alongside their content.

Sometimes it might seem inappropriate. Direct customer comments on a product page
from a manufacturer have been a step too far for many companies. That’s changing,
however, as the Kodak page on the 2008 Zi6 pocket video camera shows (http://www
.kodak.com/eknec/PageQuerier.jhtml?pq-path=13063). It contains dozens of reviews of
the Zi6 camera, many with responses from Kodak employees. Reviews range from one
to five stars, and even the one-star reviews are still on the site. Kodak’s willingness to
leave the negative reviews is a strength. Common sense would say that even good
products get negative reviews, so by including them on the site, Kodak provides a more

109

http://photo.net
http://metafilter.com
http://stephenfry.com
http://www.kodak.com/eknec/PageQuerier.jhtml?pq-path=13063
http://www.kodak.com/eknec/PageQuerier.jhtml?pq-path=13063

realistic picture of its product. Your products will get both good and bad reviews on
other sites, so presenting a falsely rosy version on your site is of dubious worth.

Adding readers, customers, or any other people to your site changes the relationships
that are possible. They become the audience or user population; they have a relation-
ship with you as the host, and also among themselves. In this case, themselves does not
mean homogeneous mass. There are multiple groupings of people who know one an-
other. Some are new to the site or visit infrequently. They talk to one another; they
“favorite” one another’s content; they argue; and they make friends, just like people in
the real world.

Personal Identity and Reputation
By having people place their content on your site, you are giving them a persistent
identity, not just a flimsy screen name. Calling myself oreillybookauthor2009 makes
me anonymous and unique. At the time of this writing, that string yields no search
results on Google.com. Tying together content and identity is important; it gives weight
and solidity to a person’s online form. (For more on linking when identities change,
see “Changing Identities and Linking Content” on page 188.) It encourages people to
behave well, too, as they are defined by their actions within a site.

However, if I create a new identity and use it on only one site, I can say whatever I like,
as it has little connection to me. This can be dangerous for the owner of the site, as I
can act with impunity and provoke or cause mischief. If that account gets banned, I
can come back as amusedhecklerwaitingforsnow and continue to provoke. Without any
content or interactions for people to discover who I am, people will be less likely to
trust me, as we explored in Chapter 6.

Creating profile pages that aggregate activity and encourage people to provide identities
gives potentially transient identities some weight and meaning. These profiles might
be the formal ones relating to trading ability, as on eBay and Amazon. Or they can be
an integral part of using the service, such as the profile (about) page on Blogger or the
profile page on Twitter. The responsible approach is to link the activity to the identity
of its creator so that it is clear who made or said what. This linking strengthens the
community and gives a stronger scope for introductions and interactions.

Handling Public, Private, and Gray Information
Potential privacy issues arise when summary information is shared on users’ profile
pages, but it is undeniably useful to show some information about a person. You should
take care that you are not disclosing more than your community might expect you to.
The limits to appropriate sharing vary with each site. For example, showing who some-
one regularly interacts with is probably inappropriate, whereas showing a person’s
favorite bands aggregated from listening habits is usually acceptable. And, of course,

110 | Chapter 8: Relationships, Responsibilities, and Privacy

people are often sensitive about displaying their real-time location and information
about their children, for obvious reasons. A basic rule: if you feel uncomfortable know-
ing a particular fact about another person, tying that data to that person’s identity for
public consumption is probably not a good idea.

There are two different contexts for considering privacy. The first is aggregated or
summary information. Most listened to, most visited, and most popular are all exam-
ples of this kind of aggregation. Commonly, this happens anonymously for central
pages, but as noted earlier, it is also displayed on individuals’ profile pages.

The second context is the actual content the people share. Both fall under your control
in terms of designing the product. Both require that you have a strong sense of what
you are trying to build, and how people will interact with the service.

A piece of information can be public or it can be private. The first case is simple and
tends to be what most people design for. Twitter started as a fully public service;* pri-
vacy was added a few months into the initial development phase. (Private in this case
means people with a private account have control over who sees their messages.) Pri-
vacy is a popular feature request. Supporting privacy is important, but it is easiest to
add it early in the development process so that you do not need to revise large amounts
of code to support excluding private items from aggregation pages, search capability,
and plenty of other places you’ll discover in testing. Implementing privacy after initial
development requires a lot more work than planning for privacy at the outset; I can
speak from experience with Nature Network.

Groups and other ad hoc collections of people fall into the gray area. Is an item of
content public or private? It depends on who is looking at the page. This is also true
for private accounts. The followers of a person become another implicit group of peo-
ple. There are other groups depending on the structure of your application.

You want to make sure that you have no gray pools of information whose privacy state
is unclear. These gray pools sometimes appear because a privacy layer was applied late
or because of changes in privacy levels. Different applications take different approaches
to privacy. On Twitter, an account is binary: it is private or it is not, but it is possible
to change the privacy state. However, if you make an account private, your previously
published content will still appear in searches (as of the time of this writing). This is
arguably a minor case, but it stems from the original structure of Twitter where every-
thing was public by default, and search was added later after Twitter purchased another
company.

On Flickr, privacy comes in several flavors, but it is more closely linked to the content
than to the person who posted or created it. Privacy is set per item, not per account.
Individuals are granted access to specific photos in an account, not an entire collection.
This model is more complicated to understand, but it is substantially more flexible. It

* http://www.140characters.com/2009/01/30/how-twitter-was-born/

Handling Public, Private, and Gray Information | 111

http://www.140characters.com/2009/01/30/how-twitter-was-born/

is also more appropriate for photography; you might not want to share pictures of your
family with everyone, but you are happy to share pictures of a conference publicly.

Ensuring that you put the right information in front of the right person means always
knowing and checking who is looking at a page, an RSS feed, or an API call. Failing to
check identity in any of these methods for any feature will result in an automatic privacy
breach and lots of irritated people. Building identity management into the core of your
application makes this a lot easier to do. Chapter 16 looks at implementation of privacy
in more depth.

Privacy and Aggregate Views
What about summary data tools that create aggregated views? These can range from
tag pages of images or messages to activity summary pages. Twitter again gives some
interesting examples of this via its API. Twitter makes it possible to find the words used
most frequently by a person. You can also see the people she sends @replies to most
often via third-party tools such as http://tweetstats.com. Other tools such as Mr.
Tweet recommend people to follow. The interaction between these tools is private to
the person requesting it. Imagine how different a place Twitter would be if these sum-
maries and recommendations were listed publicly on your profile for all to see. Some
information is definitely for private consumption only.

You can create many types of summary tools, but in general, detailed statistics or per-
sonal data should be shown to the account owner only. Simple counts are enough to
show the level of activity that a person has generated. Be careful about what you list as
public information; some people would argue that displaying the number of followers
on Twitter has turned chasing higher follower counts into a competition to the site’s
detriment.

Statistics, such as the Flickr stats shown in Figure 8-1, are interesting to, but they are
too detailed to show on the Flickr image page itself.

Personal information regarding the specific actions of an individual is best kept private.
This includes summaries of interactions with a specific person. Sharing that I have 800
favorites is fine as a summary item, but showing by default the top five people whose
pictures I mark as favorites might be giving away too much information. Context is
very helpful. Figure 8-2 summarizes my listening habits for 2008. This is useful infor-
mation and does not personally disclose someone else’s activity, so I’d be quite happy
to share this information, though other people might disagree and wish to keep their
summaries private. Giving control over the publication of information such as this is
the right thing to do. In “Setting Exposure Levels” on page 115, we will discuss pro-
viding such controls.

Tagging is slightly different in terms of how it operates. You might think a simple
summary of all the uses of a tag on a site would be straightforward to create. However,
such a summary would include all the private tagging from everyone in a basic

112 | Chapter 8: Relationships, Responsibilities, and Privacy

http://tweetstats.com
http://mrtweet.net/
http://mrtweet.net/

implementation of the feature. In this case, you are not disclosing which person is
actually doing the tagging. However, you need to ensure that tag aggregation refers
only to public tagging activities so that you create a model of the site that everyone
shares, not one that includes private data. Depending on your site URLs and data
structures, it might be possible to reverse-engineer which tags are being used by which
groups so that filter data sets include only public data before displaying it. It is impor-
tant to exclude any private access that your own administrative account has in these
situations, or ideally to create new accounts without privileged access for this kind of
public summary work.

Generating partial views that include the private content the viewing person has access
to, as well as the public content, is a big undertaking. It needs to be of significant value
to you to provide, because it greatly complicates the search system design as very little
information becomes cacheable. Chapter 16 expands on this topic.

Figure 8-1. Statistics for a tiger picture on Flickr

Privacy and Aggregate Views | 113

See But Don’t Touch: Rules for Admins
A similar situation exists for site admins. Normally, admins can access all the data on
the site, even data that is private. The Twitter history article noted earlier (http://www
.140characters.com/2009/01/30/how-twitter-was-born/) mentions the need for private
admin accounts to help identify and test personal spaces:

We had an admin page where you could see every user. As Head of Quality for the
company, it seemed like my duty to watch for opinions or issues from our users. This
caused confusion, though, when family members of our team were suddenly being fol-
lowed by a seemingly random person. Thus, Private Accounts were born.

Once a site is live, the need for a private account for admins still exists to ensure that
everyone is behaving. Many sites offer admins a web-based means of assuming someone
else’s identity by altering their URLs slightly. Inserting a parameter before the path or
appending a parameter will let the logged-in admin become the viewing person. It is
an extremely useful technique, but it is a powerful tool and therefore it is important

Figure 8-2. Part of my listening habits from 2008 generated by http://aeracode.org/projects/lastgraph/
using Last.fm data

114 | Chapter 8: Relationships, Responsibilities, and Privacy

http://www.140characters.com/2009/01/30/how-twitter-was-born/
http://www.140characters.com/2009/01/30/how-twitter-was-born/

not to abuse or reveal it. Seeing a problem from the point of view of the actual user can
make the problem much easier to debug.

Ensuring that your users are aware that a private account is private—unless they request
help or break the terms and conditions for use—is important in developing your com-
munity’s trust. Internally, it is important to have good practices; for instance, only
approved staff members should have access to admin accounts, and all accesses should
be logged and subject to a regular audit. Social applications are now in the mainstream,
so the temptation to dip into a famous person’s account becomes more likely.

Private by Default?
A different viewpoint on privacy is the private-by-default stance of Dopplr and the now
defunct Pownce. Both of these sites encourage the model that my data is private unless
I decide to share it with others. The data flow is based on the person specifying who sees
her information. It is strongly permission-based. Adding a person in Dopplr gives that
person access to your information; it does not give you access to that person’s infor-
mation, though reciprocation is encouraged.

Starting with the premise that information is private, and you are explicitly sharing
information with others, changes the basis for aggregation. Locations in the world,
known as Places in Dopplr, are the main focus for public aggregation, rather than people
or trips. Even this is anonymous in Dopplr if you are not logged in. Once you are logged
in, you see the activity of your friends for that city alongside any planned trip you have
to the it (see Figure 8-3).

This private-by-default model works well for sites with relatively low volumes of data
exchange. People tend to travel only a few times per month at most, and people used
Pownce daily rather than multiple times per hour. Sites with a higher volume of content,
such as Flickr, Twitter, and Last.fm, however, do not fit as well with the private-by-
default approach. Defaults are important; they set an expectation for use of the service.
Many people do not change the defaults, so if you make the site private, most people
will operate it as a private service. Another difference is that private sites tend to operate
in a push mode. Dopplr makes content available to the subscribing user, so it works
better with a lower-volume content stream. Being able to share your content with
someone and have that be a high-volume feed would not work as well.

Setting Exposure Levels
Sites usually have two levels of disclosure for your users: one level that you set in the
design of the environment to specify content as public or private by default, and a
second level that users create. The second level is called a digital publics by danah boyd.
This term is deliberately plural as each person has a separate one. All users have a
different set of people who follow them and who they follow on a social network (see

Setting Exposure Levels | 115

Kevin Marks’s comments on danah’s longer article at http://epeus.blogspot.com/2008/
04/digital-publics-conversations-and.html). Essentially, this mimics our normal life.
People don’t have a homogeneous set of friends and relationships, so why should they
have one on the Web?

Complications can arise when you allow designation of multiple levels of friendship on
a social network. Flickr, for example, offers four levels of relationship: contact, friend,
family, and friend plus family. When Flickr launched, offering multiple levels was the
recommended best practice. Most sites now offer a simple follow or no contact level
of relationship. Photography is slightly different. The most common use of the friend
or family setting on Flickr is to control access to photos of children. LiveJournal.com

Figure 8-3. The New York page from Dopplr showing some data relevant to the author, along with
more general information

116 | Chapter 8: Relationships, Responsibilities, and Privacy

http://epeus.blogspot.com/2008/04/digital-publics-conversations-and.html
http://epeus.blogspot.com/2008/04/digital-publics-conversations-and.html
http://livejournal.com

lets you create multiple lists of people from your complete contact list and set the
functionality for each list, eliminating the need to set the access per person.

Content can require specific privacy protection, too. On the Flickr service, the original
uploaded image is given a secret URL so that only the person who owns the photograph
can determine who gets access to the original. This version does not have a guessable
URL, and it is not accessible via the API without the appropriate permission.

Determining the right balance between public and private data will depend on the
content turnover rate on your site and your preference as the site designer. If content
changes rapidly, public will be a good default. If there is a lot of sensitive information
in the content, a multiple-list approach to sharing information will be appropriate. Fully
public sites do exist. Last.fm is a good example of a site without a private account;
though you can hide some activities (see Figure 8-4).

Figure 8-4. Last.fm privacy control settings

If you offer a private type of account (see Figure 8-5), you will need to create a public
face (see Figure 8-6) for these profiles. Typically, this will have a small amount of sum-
mary information about the person, but usually it will not have any of the site-specific
content from the person. The site still hosts a profile space for the person, but the person

Setting Exposure Levels | 117

is opting not to share her content with others in a public manner. This seems to go
against the idea of having a profile page; in fact, the only people who will be able to see
the content from this person and thus wish for additional context are people who the
contributor has already approved to see her content. The public face allows her to be
seen on the site but avoid having to share more than she wishes to. It also provides a
discovery mechanism so that new people to the site can find these users, with whom
they might already have a firm relationship.

Figure 8-5. Private profile on Twitter

Figure 8-6. Logged-out view of a profile on LinkedIn

Once you have created these public views, a mechanism for editing them is required.
Figure 8-7 shows the editing interface for Dopplr. All sites require the means to edit a
profile page, and this page is always displayed differently for people other than the

118 | Chapter 8: Relationships, Responsibilities, and Privacy

owner. At a minimum, it will not have an edit profile link. On sites such as Dopplr,
this public profile is an additional step out of the ordinary, as it is a public face for non-
users of the site. A similar situation exists with the LinkedIn profile. These pages are
visible only if you are completely logged out of the sites.

Figure 8-7. Public profile in editing mode on Dopplr

The Dopplr example is interesting because it is customizable in terms of how much
personal information a person shares. Chapter 12 discusses how to create these differ-
ent views of a profile page.

Managing Access for Content Reuse, Applications, and Other
Developers
Looking beyond the immediate context of your website’s interface, sharing your data
through APIs raises additional privacy concerns. Unintended outcomes from APIs are
more common than you might expect. Misunderstanding how the API works and in-
advertent outcomes from using personal credentials for the API client can lead to private
information being shared with the wrong people.

Managing Access for Content Reuse, Applications, and Other Developers | 119

The specifics of identity management and the password antipattern are
covered in Chapters 12 and 16, along with discussions of OpenID and
OAuth.

Content Reuse
APIs are about sharing content, for the most part. Many APIs allow for external content
generation, giving users another way to get their content into the system. APIs that
allow for content reuse, which let information flow out, are the more dangerous ones
in terms of privacy. APIs need to be as watertight about privacy as the main website,
but your community’s understanding of how APIs operate is likely minimal.

For example, Jeremy Keith, a web developer and author, developed a Flickr API ap-
plication on his site, Adactio.com, which allowed redisplay of photos from Flickr within
the context of his site, called Adactio Elsewhere. It allowed arbitrary display of any
image, and you could browse contacts, too:

The Flickr section pulls in my contacts, my newest pictures and the newest pictures from
my contacts. Clicking on a thumbnail brings up a larger view of that image. Clicking on
that brings up a larger view again. Clicking on a contact’s username starts the whole
process again but this time you see their contacts, their photos, etc. I find it quite addictive
clicking through to pictures from someone who is a contact of a contact of a contact.

Shortly after he launched this functionality, a question was posted on Flickr (http://
www.flickr.com/help/forum/20686/), followed many months later by an irate thread
(http://www.flickr.com/help/forum/50508) in which a photographer who had marked
his images as “All Rights Reserved” complained that the larger version of his images
were appearing on Jeremy’s site. What was happening was that the Google search
engine was simply following links that eventually took the search robot from Jeremy’s
page to the pages for this photographer. However, many of the users of Flickr felt that
it was Jeremy’s fault that he was displaying the images, even though he was not storing
them. The issue is difficult to judge clearly: the main photographer opinion is that the
bigger image use did not count as fair use. The situation resolved itself with the initial
complainant’s username becoming a special-case exemption and no photos being
served from Jeremy’s script for that photographer.

Google’s robot blindly following links led to the images being indexed. The fact that
in 2007, Jeremy’s site was already highly linked to meant that the versions of this pho-
tographer’s images became highly ranked on Google. People cannot easily understand
whether the images are real copies or are included via an API call. The Flickr API was
designed so that “All Rights Reserved” images can be displayed if requested by user-
name, which meant lots of other tools could use the API to make tools based on access
to photos from a specific user. Clean URLs and simple interaction design meant that
Jeremy’s site was easy to index. It is a complex situation to get right and one that some
people had a strong reaction to, so it became heated quickly (it’s also a good example
of community, host, and developer, all pulling in slightly different directions). The

120 | Chapter 8: Relationships, Responsibilities, and Privacy

http://adactio.com
http://adactio.com/journal/988/
http://www.flickr.com/help/forum/20686/
http://www.flickr.com/help/forum/20686/
http://www.flickr.com/help/forum/50508

entire thread is worth reading to see what sorts of issues can be thrown up unexpectedly
by API usage and the kinds of fixes that get demanded.

Even simple, non-API-based aggregation can be hard to get right. For instance, I set up
a private blog (a non-public URL) for my first son and wanted to aggregate the public
photos from Flickr into one place for my parents. A simple and quick means of doing
this was to use a Tumblr microblog, but I failed to notice that Tumblr inserts a link
back to the source for content. I had inadvertently leaked my private blog in an attempt
to simplify access to the photos for my parents. Google came, crawled the links on the
Tumblr blog, and followed the links back to the non-password-protected private blog
and indexed the content. If I had thought this through more carefully and not rushed,
I would have removed the link on Tumblr pointing back to the source links on my blog.
I would have also added no-index no-follow metadata in the HTML for the pages on
my private blog in case Google inadvertently found it. This stops a search engine from
indexing the content and stops it from following any of the links on the page.

Many sites now have a mobile version of their content specifically designed for a device
such as an iPhone. The security on these versions needs to be as tight as that on the
main site, even when they are launched in beta. Launching without the same security
measures in place just encourages opportunistic hacking of your content.

Don’t Give Away Too Much Power
Structuring your API so that there is a read-only version with no authentication and a
separate authenticated version that gains access to private accounts is quite common.
The authenticated version is also used to access the write capabilities of the API. The
majority of access to your API will be read-based, but managing control over whom
you allow to create content on behalf of your users is important. Giving write access
via an API empowers the application to act as that person to create or delete content.
Chapter 16 discusses the security aspects of this, and Chapter 17 explores how to
structure an API so that you manage the capabilities of the API appropriately.

On Twitter, there is a rash of applications that want you to authenticate so that they
can send a message as you. Typically, this is described as tweet the results or tweet
this. Often, this is a one-time usage, but some applications, such as Loopt and My name
is E, among many others, keep the password and send messages without the explicit
permission of the Twitter user.

Impressing upon your API developers the need to respect the people whom they are
getting to use their applications is important. No application should send what is es-
sentially an advertising message without the explicit permission of the person using the
application. Another common transgression is spamming the email address books ob-
tained from Yahoo! and Gmail. Both of these activities seem like a great marketing ploy,
but both will quickly generate a negative reaction from your community. It is your
responsibility as the API creator to set and enforce the guidelines regarding use of your
own API.

Managing Access for Content Reuse, Applications, and Other Developers | 121

Licensing Content
Earlier I touched on the issue of rights management in the Flickr example. Let’s return
to this now and look at the potential for giving your community control over their
content. The common default on social applications is to take a non-exclusive, world-
wide, and perpetual license on any content that is submitted. This means you can
display the content someone puts on your site and retain the content even if the person
leaves. This is the norm for text-based content. With photographs, it is common to
remove the image content when the person deletes his account, but to retain the right
to display any previous conversations.

The norm is to assign “All Rights Reserved” to your users to indicate that they own the
content and wish to protect it beyond letting you host it. The Creative Commons (CC)
license gives another option. It provides a staged option between content that is copy-
righted and content that is in the public domain (see http://creativecommons.org/about/
licenses/). It breaks the rights down into different elements: requiring attribution, com-
mercial usage, whether the image can be modified, and the ability to redistribute the
content. All of these elements are supported within the CC license. My own pictures
on Flickr are licensed as Attribution Non-Commercial No Derivatives—otherwise
known as BY NC ND (this is quite popular on Flickr)—which means that I require
attribution, someone reusing my images must credit me as the photographer, I permit
non-commercial usage without explicit permission, and I wish the image to be used
unedited. Furthermore, I do not allow derivatives of my images without asking me first;
and I am at liberty to grant more flexible licenses if people ask me.

In fact, a whole interface is dedicated to searching for CC-licensed photographs. The
CC licenses are free to assign to your content and can be used for many types of creative
work, from blog posts to songs and videos. They allow reuse of the licensed content
and incorporation into other sites in a clear and managed way. Chapter 17 will explore
the potential for integration into other sites in more depth.

Summary
This chapter highlighted the issues regarding privacy and rights management for your
community. Recognizing that you have a new set of relationships to manage is the
essential starting point. Flickr is not terabytes of JPEGs; it is a community of photog-
raphers who care about the pictures they have taken. You need to think about how you
construct the dynamics of sharing and privacy in terms of the relationships and activities
you are enabling. Simply copying the behaviors of one site and applying them elsewhere
will not work. The Dopplr example highlighted the care you need to take with private
information. Finally, it is vital to ensure that your API respects the rights your com-
munity has assigned to their content.

122 | Chapter 8: Relationships, Responsibilities, and Privacy

http://creativecommons.org/about/licenses/
http://creativecommons.org/about/licenses/

CHAPTER 9

Community Structures, Software,
and Behavior

There are thousands of communities on the Internet. Some are vast, some are tiny. Each
is unique, but some common behaviors emerge in similar contexts, depending on how
the community is hosted, on the participants’ relationships to one another, or on the
subject matter. In this chapter, we will look at several general types of communities
and then review some common types of social software infrastructure.

Community Structures
Communities are not a new concept. People have existed in communities since before
we started to farm the land. What is recent is the ability to form communities that are
geographically distant and entirely interest-led. For instance, prior to the Internet, if
you wanted to find local hi-fi buffs, you needed to hang out at your local hi-fi or record
shop. Now you can find dozens of hi-fi communities on the Internet, and the only
barriers are language and the times people are awake.

All communities are a form of group, and so they follow the behavioral patterns that
groups exhibit. People in groups tend to identify with the group as a whole; they will
sometimes be unwelcoming to strangers and will form norms for group behaviors. They
also have a common history which will be referenced from within the group. Finally,
you cannot make a group. You can create the conditions for a group to form and en-
courage the formation, but you cannot force people to interact socially online.

Publisher-Led
Publisher-led communities are quite common on the Internet, as publishers engage
with their readerships on their own websites. Traditionally, a newspaper publisher
might have invited letters to the editor; now the conversation can occur alongside the
editorial on the newspaper’s website. These concurrent conversations are becoming

123

common on news websites, and they are the norm for electronic publications. Even in
book publication, community efforts are widespread in the travel sector.

The tension between the publisher-derived content and the community-generated con-
tent needs to be managed carefully. It is important to distinguish between the two, but
not to discriminate against the community content. It is easy for a publisher to regard
its own content as “better” and to hold the community-generated content in a lower
esteem. This can manifest itself in many ways, from isolating it in a separate place to
placing it beneath the publisher content in each context. Community-generated con-
tent differs from the content that publishers create. One difference is that publishers
pay for their content, whereas community content comes from an interest or passion
about the subject being covered; love, not money, is the driving force behind its creation
(see http://rooreynolds.com/2009/05/07/alternatives-to-ucg/ for a discussion of terms
the BBC could use for the content that comes from its communities).

The increasing use of blog software to power online publication of single-interest news
sites brings with it the built-in ability to comment on the content. In turn, this is raising
the expectations people have for more traditional printed publications. This pressure
is felt in many other areas of publishing—in particular, in sports, hobbies, and
academia.

Interest-Led
The interest-led community is a very common model. The intention behind many
message board installations is to support a common interest. Frequently, someone in
a group will say, “I’ll set up an X for that and email you all.” The X is typically a message
board. Message boards can be run by enthusiasts or supported by various companies
and organizations. Typically, they are not for-profit or subscription-based. It is entirely
possible to support a reasonably large community message board for less than $20 per
month. It is also possible to make these costs back in affiliate income or text-based
advertisements. Hence, there are thousands of small community endeavors out there.

However, the complexity of software integration means these tend to be based on the
customization of single products. Often, a message board hosts the comments on the
articles posted on the site’s front page as well as other forums for discussion. This
simplifies or even removes the software development work, because there is one user
registration database to manage, and therefore one set of profiles and a single audience.
However, this can limit the potential for future development, because you are depend-
ent on the product development of an external piece of software.

Product-Led
Product-led sites have a particular product at their core, where there is a commercial
relationship. There are two real groupings here depending on whether the host creates
the product (e.g., Apple) or is a retailer of the product (e.g., an Apple retailer). The

124 | Chapter 9: Community Structures, Software, and Behavior

http://rooreynolds.com/2009/05/07/alternatives-to-ucg/

focus tends to be on customer support, which is different from publisher- and interest-
led sites. The company or retailer has a much more overt role to play, mitigating the
complaints of its customers.

These discussion boards can be a tremendous company resource to learn from. For
instance, the Apple customer support boards are full of non-Apple and Apple members
helping one another. Widespread issues with new hardware surface here, and Apple
sometimes intervenes to get more details directly from customers. Apple is not unique
in running boards such as this, but many companies avoid this kind of direct customer
involvement online, certainly on their own sites.

Another approach is to use an external company for customer support. Timbuk2 uses
Get Satisfaction to host its customer support (see Figure 9-1), and links to Get Satis-
faction from its customer service pages. In 2008, the integration was a more explicit
embedding of the Get Satisfaction content; today, thanks to the addition of Timbuk2’s
own blog, there are now two community aspects to Timbuk2: a blog and a discussion
forum.

One advantage of this approach is that you can host potentially negative conversations
at a distance from your own company site. This separation of service and product news
works well for product-led company sites, but it probably wouldn’t work as well for
more editorially focused sites. For a product company, the object that is being discussed
is usually a physical, software, or service object. Because the product and the discussion
are tightly intertwined, separating the discussion is harder to do on, for example, a
newspaper.

Supporting Social Interactions
In social applications, there may not be a traditional message board or discussion space.
Instead, the interaction is likely one-to-one around the community-generated content.
Applications such as Facebook and MySpace are obviously social software, too. They
are not sites that you can copy directly. They evolved from something much smaller
and simpler. They are places with which you can integrate. Upcoming and Delicious
are good examples of this type of community, and many of the newer Web 2.0 com-
panies fit into this space as well.

There is a definite community interaction between individuals in social applications,
but the start of this interaction is based on the user’s own content. The initial social
interactions will be between people the user knows, rather than the community at large.
The community grows when people find that the product and the social interactions
they engage in are useful. Compared to a discussion board, the focus in social appli-
cations is on the objects, which can range from photos to events, rather than a discus-
sion about the subject. That being said, many social applications also host a discussion
board, too.

Supporting Social Interactions | 125

http://getsatisfaction.com/

The actions that bind the community in this case are usually based on sharing, com-
menting on, or rating content coming from others. On sites such as Delicious, Up-
coming, and FFFFOUND!, the content is added to the collections of each person using
the site. On Flickr, the photos are owned by each person; they can be commented on,
but they can also be marked as favorites, which is a simple form of rating system. On
Digg and other news aggregators, the flagging of stories allows the relative popularity
of each event to be shown.

Social Applications for Teenagers
Facebook and, especially, MySpace are different from other applications we’ve dis-
cussed thus far in this book, because they have a large number of teenage members.

Teenagers rely on these social applications for communication. Twitter is a post-teen
product; it has little bearing on teenage life. Research from danah boyd in 2009 reaffirms
the idea that this age group sees email as not being relevant to them. They live their
lives in one social application until their interest wanes and the next one becomes
popular. danah solicited questions on Twitter from adults prior to some research with
teenagers in Atlanta. The following excerpt gives a sense of their attitudes:

Question:

@shcdean: What future do they see for FB or Twitter.

Figure 9-1. Timbuk2 support pages showing the Timbuk2 Dialog branding of the link to Get
Satisfaction

126 | Chapter 9: Community Structures, Software, and Behavior

Response from danah (http://www.zephoria.org/thoughts/archives/2009/05/16/answers
_to_ques.html):

They don’t use Twitter. When asked, teens always say that they’ll use their pre-
ferred social network site (or social media service) FOREVER as a sign of their
passion for it now. If they expect that they’ll “grow out of it,” it’s a sign that the
service is waning among that group at this very moment. So they’re not a good
predictor of their own future usage.

This book is aimed primarily at people developing software for adults. Teenagers and
younger children often behave quite differently from adults. Features such as personal
messaging are much more important to teenagers than to people of college age or older.
Other issues such as the lack of a credit card (and legal issues) mean you need to ap-
proach design for these age groups in quite a different manner.

Non-Text-Based Social Interaction
These application examples show that the medium of exchange does not have to be
simply words. These applications generate a community because they are designed for
sharing information. This “architecture of participation,”* as it is frequently known,
can be hard to get right. Balancing the needs of the application so that it works well for
the individual and is used repeatedly is one set of problems. Making the application
successfully social involves finding the right mechanism to turn that individual activity
into an ongoing conversation or something that can prompt further social interaction
between regular groups of people.

On Delicious, the simple aggregation of the bookmarks from an individual’s social
network offers a useful feature, but it is not conversational. The Add to Network feature
lets people connect to one another but doesn’t establish a conversation; as a compar-
ison, on ma.gnolia there is a Give Thanks feature (see Figure 9-2) that allows
anonymous appreciation to be shown among community members. In Flickr, the con-
versation is more obvious in that it is a response to a photograph; however, the lower-
level interaction of “mark as favorite” is still there.

There are two levels of social interaction here that allow for lightweight community
engagement between the members based on the sharing and appreciation of content
objects. On Delicious and FFFFOUND!, they are anonymous in nature. On Flickr, the
favoriting action is named to an individual; people are more likely to follow closer
friends on Flickr, so there is the opportunity for more personal social interaction.
Table 9-1 shows some other non-text-based means of social interaction.

* Tim O’Reilly coined the phrase in 2004 (see http://www.oreillynet.com/pub/a/oreilly/tim/articles/architecture
_of_participation.html).

Supporting Social Interactions | 127

http://www.zephoria.org/thoughts/archives/2009/05/16/answers_to_ques.html
http://www.zephoria.org/thoughts/archives/2009/05/16/answers_to_ques.html
http://www.oreillynet.com/pub/a/oreilly/tim/articles/architecture_of_participation.html
http://www.oreillynet.com/pub/a/oreilly/tim/articles/architecture_of_participation.html

Table 9-1. Types of non-textual social interaction

Type Action Example sites

Anonymous Add to library FFFFOUND!

 Add to library Delicious

 Give thanks ma.gnolia

 Mark as helpful on reviews Amazon

Named individual Favorite Flickr

 Loved Last.fm

 Visited/Liked Dopplr

 Share Google Reader

A primary difference between the anonymous and named means of social interaction
is the depth of personal ownership or relationship that exists. In the anonymous case,
the interaction happens on content that is generally not created by a person; the act of
mark as favorite is largely curatorial in nature. Amazon is the exception, but the rating
on a personal review is not a hugely personal interaction. This model suits communities
in which the content is more important than the person associated with it. It is possible
to form a stronger bond with any of these people, but it’s also possible to interact only
once.

Where there is a named interaction, it is happening between a group of people who
know one another or who are acting on content that is owned by someone. A photo
taken by a person is quite different from an image a person found and liked on the
Internet. This model suits interaction between small groups of people where the person

Figure 9-2. An element from ma.gnolia showing the Give Thanks feature; this shows up as an
anonymous “thanks” on your private activity view

128 | Chapter 9: Community Structures, Software, and Behavior

is as important as the content. Note that there can be different directionality in these
actions. In Flickr, a favorite is directed at the photographer, but for Dopplr and Last.fm
the action will inform the friends of the person performing the action. Figure 9-3 illus-
trates the interaction pattern for Dopplr with its visited and liked service. The model
operates purely on mouse clicks, making it quick to use.

Figure 9-3. The user interaction flow for visited/liked on the travel site Dopplr (used with permission,
Matt Jones); the model consists of simply clicking, once to mark it as visited, a second time to say you
liked it, and a third time to reset

Non-text-based social interaction is not the only way to generate this conversation; the
examples are to illustrate that you do not need to focus on the exchange of words as
the sole driver of community. Lightweight social interaction that is often purely driven
by mouse clicks can be a very positive reinforcement for community cohesion. Gener-
ally, the more personal actions are only positive in nature: “add to favorites,” “like,”
“this is good.” Due to their low cognitive overhead, it is common for people to mark
many items in this manner. Each time they do this, the recipient gains positive
reinforcement. If there was a requirement to tag the content at the same time, the rates
of activity would drop, because it stops being a semiautomatic gesture and becomes a
conscious act.

Assess how you can add these kinds of lightweight social interactions into your own
application: the large community-content-focused activities, which will generally be
curatorial in nature, and the more personal praise-bearing activities. The flow of social
interaction around a site is important. An individual returning to a site and finding that
someone liked her contributions is likely to be more positively disposed to the site.

For this to happen on a frequent basis, the interaction needs to be click-based. As noted
earlier, with a click it is possible to mark several items as good in the time it takes to
tag only one item. Make sure this click action is available via your API and encourage
developers to add this to their applications. Finally, these lightweight operations can
form the beginnings of social relationships between individuals on a social application.
An indication of interest can lead to later addition to their social circle.

Supporting Social Interactions | 129

One side effect of the “mark as favorite” action is the creation of long lists of favorites
that won’t provide further value if left as a list. “Mark as favorite” should act as a within-
application bookmarking service; the lists of favorites should then offer actions that are
relevant to the content. The ability to act as a curator of the content that you find
interesting appeals to a large number of people. Better tools should be offered to help
people manage these interesting items of content—offering permission to republish is
one example.

A simple example showing the desire for this sort of support is on Delicious. The
toread tag frequently comes from people adding bookmarks to their collections from
the content they find on Delicious. They use the toread tag as a marker for later reading
on the content they have found. On Google Reader (see Figure 9-4), the ability to share
an item of content is an interesting implementation of the favorite model. The items
can then be republished elsewhere—for example, on FriendFeed or other activity
stream aggregation services. This is a social activity based on private consumption of
content from RSS feeds, in contrast to the addition to a personal collection that happens
on Delicious.

Figure 9-4. An element from Google Reader, showing the Share feature

Competition: Making Games Social
Another good means of developing community can be competition. Many games,
among them World of Warcraft, engender community. People form clans, and there
are strong in-game social dynamics. These sites tend to follow similar paths as the
interest-led communities, but people arrive with a solid persona from the game. A new
form is the alternative reality game (ARG) where people play games based on real-world
physical locations or real-world data, using the Internet to coordinate activity.

Plundr, for instance, turns public Wi-Fi access points around the world into virtual
treasure islands, and players pose as pirates. Sharkrunners takes real-time shark loca-
tion data and allows you to pilot virtual research boats to track real sharks. There is
even a Firefox-based ARG called The Nethernet that attempts to make a game from
your browsing behavior. With The Nethernet, you visit sites and gain points, or fall

130 | Chapter 9: Community Structures, Software, and Behavior

http://delicious.com/tag/toread
http://plundr.playareacode.com/
http://dsc.discovery.com/convergence/sharkweek/shark-runners/shark-runners-hq.html
http://thenethernet.com/

into a trap that friends set on the site; you can even take on challenges, such as “use
the Web for a week without visiting Google.” I raise these examples to show that the
kind of community you are creating need not be tied only to your own site. The potential
to have real-time location as a factor in your websites is shown by these more experi-
mental uses of the Internet. The launch of the Apple iTunes App Store for the iPhone
in July 2008 will encourage many more location-aware applications, because the iPhone
offers an effective mechanism to determine the current location of the device.

Gaming communities can be short-lived because they are often event-based, but a wider
community can persist. A good example of this comes from Penguin and Six to Start
and their “We Tell Stories” project (see Figure 9-5). Six authors each wrote a story and
six questions stemmed from each story; if you could answer the questions, you’d win
a prize (http://www.sixtostart.com/blog/2008/03/27/we-tell-stories-whats-yours/). This
ARG placed Penguin as a brand at the center of a gaming experience, but one that was
still connected to fiction and storytelling.

Figure 9-5. We Tell Stories, a storytelling game from Penguin that uses the Internet as a place to tell
stories and play games

Content Creation and Collectives
Many sites on the Internet set out to allow people to create and share content. Blogger,
which launched in 1999, popularized the idea of regularly maintained personal
websites, as opposed to farms of cookie-cutter home pages, which had been the norm
on Geocities and others. The idea that an individual should regularly update a website

Supporting Social Interactions | 131

http://www.sixtostart.com/blog/2008/03/27/we-tell-stories-whats-yours/

on his own seems obvious now, but was less obvious then. This shift from maintaining
a static page of content to becoming a publisher marked a significant change in indi-
vidual activity on the Internet; anyone could become a publisher.

Fast-forward to 2009 and there are dozens of content creation sites. Often, content
appears in reverse chronological order, with the most recent content at the top of the
page. There is frequently a profile page that represents you and a page that represents
the content you have created, with each item of content getting a permalink. The per-
malink is important as it allows for reference outside the context of the hosting site. It
allows the individually owned item of content to exist on the Web in its own right.

Aggregation of this content often happens within a river of news view. Dave Winer
coined this expression in 2005. He means a page that contains a timestamped list of
the last 50 or 100 items. Older items drop off the bottom; if you come back in an hour,
there will be some new content at the top:

There’s another kind of reader, an aggregator, that works differently, and I think more
efficiently for the human reader. Instead of having to hunt for new stories by clicking on
the titles of feeds, you just view the page of new stuff and scroll through it. It’s like sitting
on the bank of a river, watching the boats go by.†

—Dave Winer

Personal aggregation and republishing experiments also started around 2005. Jeremy
Keith’s Adactio Elsewhere is an early example of such an experiment. He wrote notes
on the implementation of an aggregator on his blog (http://adactio.com/journal/988/).

Many of these services are microblogging tools that allow the person to curate short
pieces of text and pictures. The sense of community is less explicit than in a service
such as Flickr that does not allow republishing. These tools started as personal content
republishing systems and short-form blogging tools. For instance, Tumblr (see Fig-
ure 9-6) has specific interfaces for adding different types of content. This recognizes
people’s desire to republish or share content with others. The social network around
Tumblr came later. The ability to follow other people using Tumblr was added after
the initial launch. The community is formed from individuals using the same tool to
create content for themselves.

Social Microblogging
Lastly, there are the social microblogs, the most popular of which is Twitter. These are
text-only and tend to be limited to 140 characters for ease of transmission via SMS, the
cell phone Short Message Service that delivers text messages. For these purely
text-based social services, the core driver was social from day one. One of Twitter’s
early names was Stat.us. The idea came from sharing your IM status messages on a
more persistent and immediate basis. These services incorporate a social network into

† http://www.reallysimplesyndication.com/riverOfNews

132 | Chapter 9: Community Structures, Software, and Behavior

http://elsewhere.adactio.com/
http://adactio.com/journal/988/
http://www.flickr.com/photos/jackdorsey/182613360/
http://www.reallysimplesyndication.com/riverOfNews

their operation, so instead of the impersonal river of news from everyone or the river
of news from one person, they can offer a river of news from the social network of
everyone.

The popularity of these services is intriguing. Why would sharing 140 characters (fre-
quently fewer than that) with some people become a popular and much-copied activity?
The answer comes in two parts: a technical explanation and the more interesting social
answer. Technically, because Twitter limits the number of characters in a message to
allow it to be sent and received over SMS, IM, and the Web, as well as on desktop
applications, everyone can find a medium for participation that suits their lifestyle. The
social reasoning is more complex. Twitter provokes strong reactions. People love it or
they declare it pointless. It operates as a way for you to dip into what your friends are
doing or thinking in close to real time.

People use Twitter for many purposes: to ask questions, get opinions, arrange to meet
one another, make social commentary, exclaim at the world, and simply to say what
they are up to. It fills the space between a blog post and a phone call or IM. It has
become a supportive framework for asking questions and getting advice. Twitter seems
particularly popular with freelancers and others who work on their own. It provides a
channel for day-to-day chatter for them and for people who have a wide social group.
These services are arguably supplanting blogging for a lot of people; they let the simple
thoughts head into the light of day. Twitter and tumblelogs work equally well in this
case. However, blogging and longer forms of writing are still important for communi-
cating complex or longer ideas.

Pownce also fell into this category, but instead of a steady stream of short text-based
updates, people shared video and audio files or invites to events, or asked questions.
This model is also much closer to email in nature. While you can send the update to
everyone on your list of friends, you also can pick and choose who receives each update
each time. This fine-grained privacy model does mean that a lot of the activity on

Figure 9-6. Tumblr, a popular microblogging service that allows republishing of content and content
creation

Supporting Social Interactions | 133

http://pownce.com

Pownce was hidden from public view, but there are many cases where you might want
to selectively invite people to meet, and Twitter or a blog post would be an inappro-
priate means to do this. Six Apart bought Pownce in late 2008, and expects to imple-
ment the Pownce functionality in future products.

Who Is Sharing, and Why?
Activity-centered design is a good approach to application design, helping you figure
out who your audience is and how your application fits into their lives. Understanding
the kind of relationships you can facilitate on your site is important. Different com-
munities operate in very different ways; some are share openly, while others are tightly
closed.

Competition Between Peers Skews Interaction
Scientists can work in any field they want, if their credentials can secure funding for
them. So, there is essentially perfect competition in the field of science: people are free
to move into any area of study at will. Compare this to the web developer; although
the companies that two developers work for might be in competition for customers,
the developers themselves can help one another without being in direct competition.
There is no restraint (of trade) for scientists in terms of the areas they can work on,
whereas web developers cannot start working on whichever site they decide looks in-
teresting. (Of course, the scientist is bound by funding, plus access to reagents and
equipment, so it is not an entirely level playing field.) A secondary factor that skews
interaction is that the scientist is judged on his recent work, which must be novel to
enter into a science journal. Little credit is given to activities outside publications based
on original experiments.

Thus, ideas in some areas are very easy to take and use. The same is true in television;
a new TV format is a heavily protected secret. The means of implementing the idea are
well understood; it is the idea that is unique. So, elaborating on a new idea in public
can be detrimental, as others may exploit it. This is one of the reasons that some areas
are less social than others. There is a potential for information sharing, but it will be in
the areas of implementation and technique and not in the area of idea generation. The
social interaction will be in the low investment activities, as these are less exploitable.
Highly valued, unpublished content will not be shared so willingly and will at least
require credit in terms of paper citations.

Talking About Things That Are Easy to Discuss
Photography hobbyists converse endlessly about which cameras and lenses to purchase
and less frequently about the process of taking pictures, even though that is the focus
of the hobby. This is not for competition reasons; the key aspect is one of performance.
When on the Internet, the person is not taking pictures, so she turns to a metaconver-

134 | Chapter 9: Community Structures, Software, and Behavior

sation about the subject. Put another way, I can tell you how to take a good picture,
but only you can take that picture. If there is merit to be gained in highly evolved written
materials, it is unlikely that this will become the core social object for exchange on your
site.

I realize you are not building software to support scientific communication, but looking
at the degree of collaboration within your subject area is an essential aspect of good
community design. There is always a trade-off between the amount of effort and the
degree of collaboration required compared to the ease of capitalizing on that effort.
Using this understanding can help you to determine which things people on your site
will discuss openly. The next section looks at common types of open social exchange.
As you read, think about the area you are creating a product for and determine the
content to be exchanged and the motivations for the exchange of information.

How Are They Sharing?
The defaults that you set for your application will have a huge impact on how people
will use your site. If you set them to be fully open and public, you might encourage a
lot of chatty social exchange, whereas a fully private setting might lead to longer and
deeper engagement among smaller groups. People rarely change the default settings on
a web application, so picking the right settings to create the kind of environment you
think will work is your job. Do not think that an option will be reversed by the majority.

Being Semiprivate
Pownce’s semiprivate options, as opposed to making everything public, more realisti-
cally reflected the way people interact in the real world. Likewise, many people use
Twitter, but they keep their updates private. We need both a public and a private means
of social expression. The people involved in each private exchange are not the same
every time. This is an area for experimentation and growth. LiveJournal has supported
the notion of multiple friends lists for many years. These new social broadcast services
generally start with a default of “everything public,” which does make the user expe-
rience simple, but misses part of how we interact socially.

Lifestreaming and Social Aggregation
Applications such as Jaiku have been offering lifestreaming since 2006. This is an ag-
gregation of a person’s content from multiple web applications—for example, a blog,
Twitter, Flickr, and Upcoming. Jaiku itself also provides a microblogging service as
part of the native offering. Lifestreaming applies the river of news view to multiple
services, and then typically builds a social network around these streams. Tumblr and
FriendFeed (see Figure 9-7) also offer this kind of service. FriendFeed makes it the core
of its offering. Aggregation is based on consumption of RSS feeds from these external

How Are They Sharing? | 135

services, and sometimes the content exchange is authenticated by OAuth (which is
discussed further in Chapters 12, 14, and 16).

Figure 9-7. FriendFeed showing people and the services they provide to FriendFeed; each icon
represents a content source the person offers

The rise in popularity of these services is driven by a desire for a mechanism to follow
the updates from friends, who might use many services. Essentially they are acting as
RSS readers for people, as opposed to standard RSS readers that are more focused on
sites. The context is the person and you are reading the content the person is generating.
You could join every service your friends are members of and add them to your network,
or you could add them one by one into folders in an RSS reader. These lifestream
applications allow the individual to make available the content he wishes and then his
friends can follow him. Centralization is a recurrent theme in the design of social net-
working sites; everyone wants to be a hub, not a spoke.

Given the number of services many people use and the volume of updates they can
generate, lifestreaming services can aggregate a lot of information. Jaiku has an excel-

136 | Chapter 9: Community Structures, Software, and Behavior

lent feature that allows the reader to decide which of the offered streams of content she
wishes to see (see Figure 9-8). The scaling issue here is a personal one; following 150
people on FriendFeed might easily deliver more than a 1,000 updates per day, with
only 6 updates per person.

Figure 9-8. Jaiku showing, on the right side of the screen, the ability to unsubscribe from some of the
feeds provided by a person

These kinds of aggregation services will only become more common as the number of
social web applications increases and people start using a wider variety of them to
express themselves. There is a finite limit on the amount of time that someone has to
read updates from social software applications; better filtering and recommendation
services will help determine what might be of interest to each reader.

Overfeeding on Lifestreams
Even if you have a moderate social network, reading all the updates from every social
application your friends use can be overwhelming. In the future, tools will need to
manage the flow of information more intelligently. Hints of these exist in the Jaiku

How Are They Sharing? | 137

unsubscribe approach, whereby you can selectively stop receiving some types of up-
dates from friends. Another approach is to sleep an overly noisy person, thereby making
his updates disappear from your stream for 24 hours. FriendFeed has a range of mech-
anisms to reduce the number of entries displayed. For instance, it uses “and 7 more”
as a hint that someone is being prolific. The truncation of the updates from someone
and the “and 7 more” hint indicate that there are additional items from this person,
and clicking on this text will show the rest of the entries. These filtering mechanisms
need to operate on a per-web application and on a per-person basis.

Many web applications use these lifestreaming services by offering more than simple
content creation activities in their feeds for a person. Both Seesmic and Qik will send
a message to Twitter when someone is using the service. Some services will announce
all of your actions to Twitter by default, making for a very noisy experience for people
following you. Better-behaved applications follow Postel’s Law: “Be conservative in
what you do; be liberal in what you accept from others.”

What is relevant activity for your site might not be relevant for the world. Microblogging
services such as Twitter have an understood set of behaviors. These are learned by
observing community reactions and behaviors. To some degree, they are communica-
ted in the design of the application. Twitter shows you the activity of your friends below
the entry box for creating your own messages. This means you can see your friends’
context when writing. So, be sensitive to dominating the flow by sending too many
messages in a short space of time. If you do this, your avatar dominates the display of
what should be content from everyone.

Other norms exist, such as not sending automated messages on Twitter; many people
feel that is akin to spamming. If you are sending information to other services, make
sure there is enough of a context for the information to be meaningful for the person
reading the update. The FriendFeed experience is somewhat more forgiving of updates,
but the updates ideally should comprise newly generated content, not context-bound
actions such as “watched,” “viewed,” or “added to favorites.”

Managing the amount of content that is shown in an aggregated feed is difficult. Face-
book algorithmically chooses which items to show, so it is guaranteed to be incomplete.
Flickr allows members to choose from one to five pictures and from friends or friends
and contacts. Setting these options limits the number of photos the person can see, but
will include at least one update from everyone. Twitter shows everything. FriendFeed
shows some of everything, but will truncate the display for services that are being used
heavily—for example, “and 25 more photos.”

Good management tools that give your community control over what items of content
they do and do not see are increasingly important. The ability to control rate and volume
should be theirs to set. Allowing muting or selective unsubscribe capability is useful.
Noting which people someone pays attention to and which people are less attended
means you can offer everyone an overview they might recognize based on activity pat-

138 | Chapter 9: Community Structures, Software, and Behavior

terns they have set. Being respectful of the time your community spends with you is
important if you want to keep them.

A Simple Core for Rapid Growth
LinkedIn, Friendster, Facebook, and MySpace all offer a complex variety of options for
activity management. At their core, they all have a profile, a social network, and some
form of group communication tool. Why were these applications successful and many
others not? Because they had made a good assessment of their core audience and good
organic growth plans, plus they offer features that match the needs of their commun-
ities. (At the time of this writing, Facebook is dominant, but it is not the last word in
social networks.)

All of these applications are now large endeavors offering many different functions, but
they all started with a relatively small, useful idea aimed at a specific group of people.
This focus on supporting a group of people or activity is important, because it gives a
sense of coherence and purpose to the site. MySpace honed in on the music scene in
Los Angeles, Facebook started with college students, and LinkedIn focused on fostering
external business contacts. danah boyd and Nicole Ellison provide a good analysis of
the beginnings of social networks at http://jcmc.indiana.edu/vol13/issue1/boyd.ellison
.html, where they also trace the origins of social networks, from SixDegrees.com in
1997 through mid-2007.

Federation Versus Centralization
All the services mentioned so far are centralized, in that one company runs the system
and generally the software is not open source, but access to the content is open. These
software as a service companies are the bread and butter of the Web 2.0 product space.
Identi.ca, based on http://laconi.ca/trac/, and similar federated microblogging services,
such as FETHR (Featherweight Entangled Timelines over HTTP Requests; http://brdfdr
.com/), offer a new approach. They are Twitter-like applications, but they allow you to
set up your own instance of the software on your own server. This federated approach
allows individuals to customize and control the data and user experience of their mi-
croblogging platform.

This wave of federation activity follows the activity around identity resulting from the
popularity of OpenID, and it is in part a reaction to the centralized nature of larger
social networks. The ability to move your friends and your data from one service to
another is laudable, as companies do go out of business, get bought, or change direc-
tion. However, you rarely get to influence the actual direction in which these products
are headed. Running a federated social network means you have control over your own
software. This is a recent area of development. Figure 9-9 shows the migration of iso-
lated to centralized to federated applications.

How Are They Sharing? | 139

http://jcmc.indiana.edu/vol13/issue1/boyd.ellison.html
http://jcmc.indiana.edu/vol13/issue1/boyd.ellison.html
http://sixdegrees.com/
http://laconi.ca/trac/
http://brdfdr.com/
http://brdfdr.com/

Figure 9-9. Centralized versus federated versus distributed application models

Social software development seems to be moving in cycles. First, experiments with new
ways of building things result in a distributed model, with software available for down-
load and installation on many personal servers. Individuals rely on desktop aggregation
to manage the multiple servers. This corresponds to installed WordPress or Movable
Type.

Next, some people decide there is money to be made, so larger centralized services
come into existence. Individuals can follow multiple people from a single large service
provider. Aggregation happens on the server, but it is possible to form stronger com-
munity bonds between people as the community begins to have an identity. Facebook,
Flickr, and TypePad are good examples of centralized services.

Now, in 2009, with identity becoming a strong part of the equation, people are heading
back into an experimental period. Do I need the centralized servers if I can host my
own content? A federation of multiple servers and software installs, linked with a con-
sistent identity, is one future that is being explored. Locally hosting personal content
and licensing it to remote aggregation and federation services is being proposed by some
people. A federated model suits the way the Internet operates, but it is harder to make
money from, though they can avoid scaling issues.

The proliferation of services such as Google Connect, Facebook Connect, and TypePad
Connect are indicative of this need to reconnect across the Web. A common identity
being used across multiple services is advantageous. Whether these centralized ap-
proaches or the fully distributed model wins or, more likely, whether they coexist,
remains to be seen.

Social Software Menagerie
The rest of this chapter will look at the staple components of social software. These
generally correspond to the open source applications you can download and install.

140 | Chapter 9: Community Structures, Software, and Behavior

They are the application areas that most people are familiar with, but they are typically
used alone. They are social in that people can interact by using them, but they differ
from the previous services because they normally do not have a social network swirling
around them. You might use one of these as part of a larger site and integrate with it,
which is a lot easier now than it was in 2005.

Blogging
A blog is a single- (or group-) authored listing of short to medium-length essays, opin-
ions, or commentary. Blogs are almost always sorted in reverse chronological order,
with the most recent posting at the top of the page. They generally allow (registered)
comments on each posting. There are many variations on this general theme; many
blogs include lists-of-links-type postings and photographs, too. The standard 400–500-
word blog post is still the most common. Blogs tend to have a theme, but given that
they usually have a single author, the theme can drift depending on the author’s inter-
ests. Group blogs tend to stay more on topic, but they can run out of steam, as no one
person owns them.

Blogging is, in general, a “me to you” conversation, though there are, as ever, variants
such as asking people to be guests on your blog. The blogger is usually clearly identified
with her content, and she is the person who responds to comments and emails about
her site. The writing is personal in style and often opinionated; these are personal spaces
for public consumption. Loose parallels can be drawn with interior decoration, fashion
taste, or type of garden the person prefers. All of these are for public view, but the
individual gets to determine how they look and behave within a few boundaries. Merlin
Mann gives some good rules for what makes a good blog at http://www.43folders.com/
2008/08/19/good-blogs. Good blogs have a personal voice with an area of focused in-
terest. They are interesting and encouraging; they make you want to react to what the
blogger has written. Good blogs require some effort.

A blog can be a strong community feature; simply offering a space for your employees/
colleagues to talk to your community opens up the relationship. A company blog is
almost an essential item today for most organizations. It provides a simple and cheap
means to converse with people who are interested in your organization, and it is also
a means by which you can start the conversation.

Authenticity is very important. If the CEO is blogging, it should be the CEO who replies
and actually writes the text. The blog should come from identified people and not be
written like a press release, though you can put press releases on your blog, too. The
effect you are aiming for is semiformal at most, but ideally it is informal. You are starting
a conversation, not broadcasting. Posting regularly does help, but you want the signif-
icant announcements to stand out. Thus, there is a balance between just making an-
nouncements and chatting; you want something in the middle for most company blogs.
If you have no major announcements for a while, ask for feedback, but be explicit with
your users about the guarantee or lack thereof that you will address all comments.

Social Software Menagerie | 141

http://www.43folders.com/2008/08/19/good-blogs
http://www.43folders.com/2008/08/19/good-blogs

In the face of a crisis, a blog can be a real boon (or a complete millstone). Once you
realize the situation is not going to resolve itself quickly, you need to communicate with
your community. Apple and MobileMe, Joyent and Strongspace, Six Apart and Mova
bletype.org all exerpienced a type of systems failing and used their blogs to communi-
cate with their users. Apple (http://www.apple.com/mobileme/status/) didn’t provide a
means for people to comment. However, in the cases of Joyent (http://www.joyeur.com/
2008/01/16/strongspace-and-bingodisk-update) and Six Apart (http://www.movabletype
.org/2008/08/website_outage_update.html), comments were allowed, and the company
responded to the questions that were raised.

Community blogging

If you are a publisher, you can open your blog and let readers have blogs, too. Le
Monde, the French newspaper, did this several years ago using WordPress (http://www
.lemonde.fr/web/blogs/0,39-0,48-0,0.html), and many others have done this since. It is
a big step and might not be the right one for every publisher or company, and probably
is a bad fit for a product company. However, if you have a wide-ranging community
and vocal individuals within the community, it might work for you. There are different
ways to approach this. Many companies set up a separate domain to host their com-
munity blogs. Some companies set up a whole other brand to host a community blog,
such as the publisher Seed Media and its brand, Scienceblogs.com.

Depending on your subject area, you may need to recruit bloggers to your new site,
importing their old site as you do this. However, you also might get flooded with ap-
plications. If you are starting a blog for a community that was unaware of blogging,
you can be in a good position, but you will need to be aware that bloggers do move on
to other blogs, particularly successful ones. Establishing the relationship early on be-
tween you and your bloggers in terms of entry, exit, and benefits is important. If you
have your own internal blogs and you also host external community blogs, you need
to be clear about the position of each type of blog—in particular, the amount of support
you give each in terms of promotion. If the blogging community thinks you are taking
them for a free ride, they will be quick and vocal in their disapproval.

Another aspect of blogging policy is clarifying ownership of content and any possible
clashes in editorial voice. If you publish your own content and publish content from
bloggers, you need to be careful to communicate which is which. Readers are likely to
want to know this, as they have a relationship with your brand. The blogger will want
to see who created the content so that he has an identity that is separate from your
brand. If this is not done, when bloggers disagree with the editorial line on a certain
issue, it can have unexpected impacts on your company.

Creating a blogging system

A lot is involved in choosing a full-blown content management system (CMS). open
sourceCMS gives a long list of advice, but blogging software is not really a CMS as the
enterprise software defines a CMS (thankfully). An enterprise CMS is a hugely complex

142 | Chapter 9: Community Structures, Software, and Behavior

http://movabletype.org
http://movabletype.org
http://www.apple.com/mobileme/status/
http://www.joyeur.com/2008/01/16/strongspace-and-bingodisk-update
http://www.joyeur.com/2008/01/16/strongspace-and-bingodisk-update
http://www.movabletype.org/2008/08/website_outage_update.html
http://www.movabletype.org/2008/08/website_outage_update.html
http://www.lemonde.fr/web/blogs/0,39-0,48-0,0.html
http://www.lemonde.fr/web/blogs/0,39-0,48-0,0.html
http://scienceblogs.com
http://opensourcecms.com/index.php?option=com_content&task=view&id=2291&Itemid=1
http://opensourcecms.com/index.php?option=com_content&task=view&id=2291&Itemid=1

product capable of integrating with many subsystems, and offers a large amount of
configurability. Enterprise CMSs tend to be publishing systems first and community
tools second, if at all. A blog is a community tool first and a CMS second.

A simple install of WordPress or Movable Type suffices as a blog for many companies,
and the fact that many of your readers will be familiar with these well-known products
makes them attractive options. A reasonable approach might be to integrate these tools
with your own software. The editing and management interfaces from both WordPress
and Movable Type represent thousands of hours of work, which is hard to replicate in-
house cost-effectively. That being said, creating a simple blogging product is a trivial
undertaking. Ruby on Rails has a demo for creating a primitive blog application in 20
minutes. If your needs are more complex, there are maturing applications in the com-
munity platform space. If your needs are primarily for blogging, Six Apart offers Mov-
able Type Pro and Automattic offers WordPress MU. Refer to Chapter 16 for further
discussion.

Commenting Is Not the Same As Blogging
Commenting is often lumped in with blogging, as some people see them as essentially
the same things. They have strong ties, but they are definitely not the same in terms of
behavior. Commenting gives a user the ability to append a piece of text to content that
you as the site owner have created or published. So, typically it is publishers that care
about this distinction. Newspapers allow comments on their stories, science journals
allow comments on their articles, and on many social sites, users can comment on user-
generated content.

The key differences are in how the conversation is managed. Typically, a blog post will
have the author managing the conversation. In commenting, however, the editorial
team manages the conversation. Technically, a commenting system looks like a head-
less blogging system, as often the actual content that is being published flows through
an older system. (Commenting systems tend to be bolted onto existing publishing sys-
tems; this is the quickest way to implement them.) Rebuilding your technical archi-
tecture to support community interaction online, as the Guardian has done, will give
more flexibility than just connecting to existing systems would (for more information,
see http://blogs.guardian.co.uk/inside/2008/05/the_web_on_the_move_xtech_2008
.html).

This subtle difference gets clouded in the wider Internet, because people refer to the
comments on their blogs or on YouTube as comments. Most of these situations are
essentially blogging, though. A counterexample is solicited book reviews; these are
comments, because it is not the author who is soliciting, but rather, the publishing
company is making the service available.

In terms of implementation, there are fewer and more expensive options available than
in the case of blogging. Pluck offers commenting as a commercial service, as do many
other companies. These tend to be quite complex products that can interface with your

Social Software Menagerie | 143

http://blogs.guardian.co.uk/inside/2008/05/the_web_on_the_move_xtech_2008.html
http://blogs.guardian.co.uk/inside/2008/05/the_web_on_the_move_xtech_2008.html

(likely bespoke) in-house content production system and also with your identity man-
agement tools, and then finally with your web publishing system.

Where is commenting appropriate? This is a tricky question to give a simple answer to.
Many articles in the world that are open for comments don’t have any. Always offering
comments on everything you publish is likely to make your lack of community inter-
action more prominent. Striking a balance between making the stories that will get
comments and the amount of editorial time required to support this new kind of in-
teraction is key. Chapter 6 mentioned changes to staff responsibilities; this is a good
example. To get effective commenting working on your content, you need an editorial
team who is actively opening enough articles to satisfy a broad cross section of your
audience—enough articles that they still have time to create the new ones, but not so
many that most are not commented on. Meg Pickard at the Guardian suggests that the
comments should be off by default on all content. Turning on commenting is as much
an editorial decision as a publishing decision.

Commenting systems are often run in premoderation; all comments are viewed and
vetted prior to publication. This allows the company to ensure that everything meets
the appropriate guidelines, but also makes the company legally responsible for all
comments on the site, as it becomes the publisher of the content. See Chapter 15 for
more details on the legal issues involved in commenting.

In the science world, many journals have tried commenting with either one article per
monthly issue opened for comments, or every article on the site open to commenting.
In both cases, the level of community comments was low. One article once a month
will interest only a subset of the readership, and leaving everything open to commenting
can reinforce a sense that “no one is commenting, so why should I.” Although these
lessons are from science publishing, they apply to other publishers.

Groups
If you have a site that covers more than a single issue, people will want to create groups.
There is an inherent desire for cohesion among humans beings, and creating a group
represents people’s desire to find others like themselves. These groups are a subset of
the general population on the site, so they are always subgroups.

Group Formation
You can support group formation in a variety of ways. The primary choices center on
the types of groups you allow and visibility. The standard group on the Internet is a
public one. A person creates a group that is then available for other people to view and
join. He runs the group and can be a member of the site staff, a member with special
powers, or any member of the site. Membership can be open, application-based, or
criteria-driven. Finally, visibility can be private or public.

144 | Chapter 9: Community Structures, Software, and Behavior

A less common format is email-based group creation, which Pownce used. Any indi-
vidual can create a group based on a selection from her personal network. Publisher/
owner-derived groups are also common; staff members pick the areas they think will
be appropriate, and the community is unable to create groups for themselves.

Groups should have listings of its members, which supports the cohesion that people
seek. Many message boards fail in this regard, because it is hard to see who is a member,
other than by looking at the content. Membership of a group generally confers the
ability to participate in the group’s activities. Some groups allow some level of inter-
action with the group without becoming a member, but this is generally limited to
responding rather than initiating activities.

Management of groups needs to be simple and visible. The ability to see new content
and see active and new users will help, and monitoring tools are key. Most groups can
get away with a single person running the group, but many fare better if the owner has
some support. Titles for these roles can be hard to define. The owner or administrator
is the person who set up the group, and the people who help are often called modera-
tors. Flickr (see Figure 9-10) played with this idea and let groups come up with their
own names for these titles. Some clear community guidelines are vital to help members
and group admins know what to expect from one another in all roles. If admins behave
badly, people will leave the group.

If you allow community creation of groups, you can expect a high drop-off rate in terms
of group creation. Most of the groups created on your site will fail to thrive. Hopefully,
between 10% and 20% will gain enough interested people to become viable. Groups
provide an important focus for your community to congregate around and help shape
the experience from “who are all these people” to “these are people like me.” They act
well in combination with social networks that let people identify their friends.

Group Conversation
Group members need some means for interacting with one another. Message boards
are one of the most common tools used to facilitate this interaction. There are three
basic elements: the topic, which is the initial post; any replies to that topic; and the
forum or board to which the topic has been posted. A pool is a new group activity space
and it represents the collected media from participants in the group; a Flickr photo
pool is a good example. There are many other types of group functionality, including
collective editing tools and real-time conversation features. We will primarily look at
the message board, because it is the dominant means of interaction.

Conversing on message boards

Message boards are very popular; thousands of sites exist purely as message boards.
Message boards can be powerful tools to generate community. However, they can also
be prey to opportunist behavior. Many message boards, particularly technical ones, are
plagued by people who jump in, ask a question that has already been asked several

Groups | 145

times, get the answer, and then leave. This interaction adds nothing to the community;
instead, it drains the energy from the existing members and in fact can drive people
away if it occurs frequently enough. Many message boards operate on a question and
answer basis. Some manage to get to the level of conversations about the issues, rather
than just answers.

There are a few things you can do to counteract this leeching behavior. There is a
balance between making it too hard to contribute and thereby putting off people who
will stick around and get involved with the group, and making it too easy to ask a
question so that you get inundated with people asking the same ones. To do this cor-
rectly relies on using the existing content in the message board to provide answers to
the person asking a question. The person often wants an answer quickly, and rather
than making it easy to ask a question, you should make it easy to find an answer.

Tagging is important for making this work; if you do not use tagging, text analysis of
the question may be appropriate. You need to get to the essence of what the question
is about and use this to suggest similar questions that have been asked before. Matching
a new question to existing questions is much easier than matching questions to answers,
though this is dependent on the subject area. Simple text matching of tags against the
text in answers can work, though it tends to bring up longer threads, simply because
they have more text content in them, and so more content against which to generate

Figure 9-10. Names of roles in Flickr that allow group owners to customize their titles

146 | Chapter 9: Community Structures, Software, and Behavior

matches. However you implement it, you need to use the existing content as a filter to
stop new questions from being asked.

Filtering questions is a polite mechanism to get people to read the existing content on
the site first, including the FAQs page. People rarely do this, so by highlighting it for
them, you make it so that they are much more likely to read some of it and hopefully
find their answer.

Message board design is a combination of information architecture and interaction
design, as every site is, but the linkage is very direct in message boards. The software
provides a framework for a huge volume of community-generated content. By provid-
ing tools to aid in the curation of this content, you can help the community gain more
value from their conversations. It becomes an archive of answers and content rather
than a series of transcripts of conversations.

Tags Create Navigation
Nature Network uses tags extensively to allow discovery of conversations. Science is a
multidisciplinary subject, so any single conversation might have a large number of
communities that it could interest. Hence, Nature Network decided not to support
subforums. Every topic can be tagged, and the tags act in two ways (see Figure 9-11):

• Within a forum, clicking on a tag will narrow the focus to topics tagged with the
corresponding word. So, from Physics you can view only the optics topics in that
forum. Here, the tag acts as a filter.

• You can also broaden out and see any conversation tagged with that word in any
forum. This is using the tag as a search term.

Figure 9-11. Nature Network content tagged with “intellectual property” on the Patent Law
Primer forum

Groups | 147

Finally, you can see the forums in which the tag occurs. The ability to move across the
message boards/forums by using tags makes the topics or conversations the main object
of interest, instead of the focus being the forum and subforum hierarchy. You need a
large number of areas of interest to benefit from this approach, but it has application
outside the realm of science; for instance, Get Satisfaction uses a similar approach on
its site.

If you do not use tags on your message board, you can track which conversations your
community values from search engine keyword analysis. This will give you a sense of
the topics for which people are being referred to your site. Then you can editorially
decide to embrace this or attempt to steer your community in a different direction.
Monitoring the overall activity in terms of raw counts is important for scaling and
determining ad revenues, but you need to understand what your community is actually
discussing. Ideally, you will know this, because you and your colleagues will be involved
in those conversations; however, if you have a busy site, you cannot track every
conversation.

Communities develop their own personalities, and within them there are various roles
the members can take on. I do not mean the more formal admin and moderator roles,
but the types of community behavior that mature societies develop online. For example,
Marc A. Smith at Microsoft Research looked at millions of Usenet‡ messages in the late
1990s. He determined that there are definite types of people in terms of community
engagement. Roughly paraphrased, they are the ask-and-leave types, as already dis-
cussed; the person who acts as the backbone and answers the majority of questions;
the infrequent regular who dips in and generally asks questions; and the announcer
who brings news to the site.

Returning to the ideas in Chapter 3 and the experience arc (a profile of long-term po-
tential interaction with a product), we see the same patterns of regular versus occasional
usage happening on Usenet. No research has been done on a similar scale for message
boards, but the same patterns exist there, too. People like to associate in groups. They
enjoy social interactions, but resent intrusions into “their” community. Treating mes-
sage boards as a place for social interaction is important; it is easy to get lost in the
technical details of how to create them and implement new functionality. It is important
to also see the community and experience the product as they see it.

One strongly humanizing element is the profile page. Many message boards provide
very simple profile pages—almost name badges, in effect. Adding to these pages by
aggregating the last 10 posts or replies gives a stronger picture of each person on the
message board. Extending this to show the forums each person regularly participates
in and the tags she has been using recently gives an even broader picture. These features

‡ Usenet is the Internet news service that was very popular in the 1990s. For more information, see Marc’s
paper, “Invisible Crowds in Cyberspace: Mapping the Social Structure of the Usenet,” at http://research
.microsoft.com/research/pubs/view.aspx?pubid=798.

148 | Chapter 9: Community Structures, Software, and Behavior

http://research.microsoft.com/research/pubs/view.aspx?pubid=798
http://research.microsoft.com/research/pubs/view.aspx?pubid=798

are very helpful in determining the relative trustworthiness of someone posting on a
forum. Metrics such as the number of posts she has made or the length of time a person
has spent on the site are also helpful, but showing the actual content she has contributed
is more valuable.

Making message boards

You can create a message board in many ways, while retaining the same forum, topic,
and post arrangement. One of the primary tasks is to figure out the URL structure so
that people can consistently reference a reply in a forum post; fixed-length pagination
makes this a lot easier to achieve.

Other issues to consider include placing images in posts and making thumbnails of
larger images. Decide whether you want to allow nested threads in your topics and how
you will handle quoting or other internal references to replies. Nesting tends to en-
courage drifting within the topic. Being able to easily quote and reply directly to another
reply is important because it lets people create more useful conversations.

People will often want to edit a reply immediately after posting it because they discov-
ered a typo. Allowing this for, say, 15 minutes is quite common; auto-timestamping
the edit helps in following conversation flow. Some forums do not allow edits if some-
one has replied.

Tagging content is a relatively new capability on message boards. It seems like a better
way of implementing the kind of intent behind subforums, but without the restrictive
hierarchy. Tags also help in terms of information retrieval. Sometimes all participants
in a topic are allowed to add tags, so the person answering the question can assign more
accurate tags than the naive inquirer might have. Auto-suggestion based on topic con-
tent will help to control the potential explosion in tags assigned to topics. Depending
on how well structured the subject area is in which you are operating, you might be
able to seed the tag word list with appropriate terms.

How you handle moderation is important, too; simply removing offending posts can
disrupt the flow of conversation. Most communities operate in post moderation; that
is, people complain about an item of content after publication. So, there are many ways
to determine whether something merits attention (see Chapter 15 for more information
on this important topic).

Message boards and the like are great if you want to host an open conversation on a
topic, but sometimes simply drawing lots of content together is enough for people to
feel part of something.

Groups | 149

Group Aggregation Tools
Aggregation is an important part of establishing a sense of togetherness. People want
to see what they have made, and through this are hopefully inspired to make more
things. Certainly, this is one of the important aspects of the photo and video groups on
Flickr, Vimeo, and YouTube. Sometimes the content they “make” is simply images,
but video content comes closer to collective blogging. The aggregation allows people
with a specific interest to share content with one another, which may spur further
conversation, but the sharing is the primary activity. Tools such as this are relatively
simple to create once you have a group structure in place. For each social object, an
“add to group” function places the object in the appropriate group. This was abused
in Flickr for a while, because people tried to game the “interestingness” function by
placing their pictures in front of as many people as possible. That abuse aside, content
aggregation for groups is a positive feature for most sites.

FriendFeed has added an interesting mode of group creation and sharing on its site. Its
groups are called rooms and people selectively reshare items of their content in a room.
This creates a river of news on a topic, much as a lightweight group blog might create.
It is a surprisingly effective mechanism for following an area of interest and, when
combined with the commenting facility, for understanding community viewpoints on
a subject.

Collaboration Tools for Groups
If your group is looking for a more concrete outcome than simply ongoing conversa-
tions, there are other tools to look at. Table 9-2 lists some collaboration tools and the
situations for which they are best suited. A full-blown wiki is sometimes the right sol-
ution for document editing, but they are often misused. Wikis need to have a definite
purpose in mind. If used as a community note-taking tool, they can quickly get out of
hand.

Another approach is to use the wiki page, which is a shared document much like Google
Docs or WriteBoard from 37signals. Often, people want a means of writing and amend-
ing a document in a small group, and a shared document facility is perfect for this.
Lastly is the community review of a document that often is written by one author. In
this case, a document uploading and commenting service is very useful. The author
uploads a document and then the rest of the group comments on the web page about
the document. The author can then upload revised versions for further comment.

150 | Chapter 9: Community Structures, Software, and Behavior

Table 9-2. Collaboration tools

Community Purpose Tool Outcome/example

Anyone from the
community

Directed information
capture

Wiki Set of coherent notes on a well-defined
project, such as http://microformats.org/
wiki/

Known individuals Collaboratively edit a
document for a known
purpose

Shared document editing
tool with revision
tracking

Usually a single document; Google Docs is a
good example

Single author and re-
view panel

Gathering feedback on a
draft

Upload and comment sys-
tem, allowing multiple
uploads and commenting

Revised document or images; Basecamp
supports this well

Anyone from the
community

Ongoing discussion Web-based chat system Searchable archive of conversations/great
replacement for email; see FriendFeed or
Campfire

A final example of a useful group tool is a web-based chat service. These sit between
email, Twitter, and IM in terms of their functionality. They have the non-real-time
benefits of email and Twitter, but the immediacy of IM when the participants are online
together. Campfire from 37signals is a great example of this kind of functionality. This
kind of web chat tool is a good replacement for multiple emails, particularly in a team
setting. If the kind of communication you are trying to support is more akin to office
chatter than to formal questions and responses, this might work for your community.
The rooms in FriendFeed are an open-aggregation-based version of a similar concept.

Social Platforms As a Foundation
Instead of writing your application entirely from scratch, there are other ways to build
it while avoiding the trap of copying another site, as noted in Chapter 7. Several of the
larger Internet companies have released platforms upon which you can create applica-
tions of your own. There are four main development types:

• Facebook platform and the Google OpenSocial framework

• OpenSocial Container; Shindig is a common reference implementation

• Google Friend Connect, Facebook Connect, and TypePad Connect

• Drupal or BuddyPress, an extension to WordPress, and many other open source
products

Groups | 151

http://microformats.org/wiki/
http://microformats.org/wiki/
http://incubator.apache.org/shindig/
http://drupal.org
http://buddypress.org

The first option is to create an application that runs on top of the Facebook or Open-
Social application platform. Your application becomes tied to these, but you gain the
benefits of their huge existing audiences. The Facebook platform works only with
Facebook, but you get access to its 200 million users. OpenSocial works with a wider
variety of social applications, such as LinkedIn, MySpace, Ning, and several Google
products such as Gmail.

Facebook and OpenSocial applications are a good way to connect your community
with the large communities on these other platforms, but you need to have your own
product to connect it with. Solely pursuing a social strategy based on Facebook or
OpenSocial is limiting. Admittedly, few people are doing this alone, but think of these
applications as a means of supporting your community and ensure that you develop
an excellent experience for your own site, too.

An OpenSocial container is the opposite of creating an application. You implement a
set of defined OpenSocial services and then other OpenSocial application developers
can deploy their applications on your site. LinkedIn did this in late 2008, with Hud
dle, WordPress, and SlideShare (http://www.slideshare.net), among others. There are
real advantages in building a social application in this fashion. Essentially, you are
connecting with another community in many cases and gaining additional functionality
for your own site.

There are also many ways of allowing login with preexisting credentials, and these bring
the existing community along, too. The Facebook Connect, TypePad Connect, and
Google Friend Connect tools are designed to bring the social relationships that people
already have on these services to other sites. Connecting these social products involves
little actual development; cutting and pasting some code is the usual approach. These
tools allow a simple login process, commenting tools, and persistent profiles for the
people who are visiting your site. They represent a simple first step in adding com-
munity to your website.

Drupal and products such as Movable Type Motion and BuddyPress are community
platforms. They offer a large amount of functionality upon which to base a new appli-
cation. All three are extensible and well supported with active developer communities
behind them. They are primary content management tools first and social networks
second, so they have good tools for community management and content creation. If
they contain the majority of the functionality you need, they can be a great place to
start. They can also act as a useful adjunct to your core application by providing the
generic discussion forums or blogs that you might need.

Ning and White Label Social Software
Rather than building your own social web app, you can use one of the many providers
of white label social software. These companies provide a basic framework of discussion
and blogging, as well as the ability to create a social network. Ning is probably the most
famous of these, but there are others, including Pluck, Jive, and Mzinga.§ They can be

152 | Chapter 9: Community Structures, Software, and Behavior

http://www.huddle.net
http://www.huddle.net
http://wordpress.com
http://www.slideshare.net
http://www.slideshare.net

a very cost-effective means of launching a product. These tools differ from those in the
previous section as they focus on the community aspects first, not the content man-
agement aspects. They also tend to be hosted products and commercially licensed as
opposed to open source and/or free.

Over the past few years, the minimal set of functionality for a social network application
has consolidated into a firmer set of features. Several companies are now offering similar
white label social applications. If you do choose to use these companies/products, you
run the slight risk of having a site that looks like everyone else’s. You may lack that
unique proposition that keeps people on your site. However, if creating a social net-
working product is not the focus of your company’s business, these products can be a
good choice. The rest of the book will be helpful in terms of understanding what you
might get from one of these providers.

Growing Social Networks
A social application has at its core a list of contacts. These lists are becoming the new
address book. The ability to have an address book of contacts online is not that new,
but over the past decade or so, these address books have taken a much more active role.
The address book has become an activity tracker and aggregation tool. Each person on
the list is someone who can potentially generate activity that we will then see. Adding
someone to a contact list in a social application is an expression of interest.

Social networks are now the foundation of most community-focused online endeavors.
To quickly dispel a myth about social networks, they are not for finding new friends,
they are for staying in contact with existing friends. You may meet and add new people
in real life, but the primary focus of a social network is maintenance, not acquisition.
The creation of the application platforms and various Google Friend Connect or Face-
book Connect products bears witness to the strength of preexisting social contacts.

A well-defined activity is at the core of many successful social networks. This means
you can communicate the main intent of the site in a few words. For Flickr, it is “share
photos”; for Dopplr, it is “shared traveling intentions”; for Last.fm, it is “music listened
to”; for Twitter, it is “share context.” In this way, it is possible to get a sense of what
the site consists of quickly.

There are other ways to approach this. For instance, the profile-led approaches of
LinkedIn and Facebook allow people to gain a first-time persistent online presence,
one they can update as they move from job to job. However, without some means of
communication, they would be dry places. The communication tools on these profile-
based sites allow people to feel and act as humans and ensure that the provider has
more up-to-date profiles. Turn the clock back 10 years and these sites would have been
static page templates and not rich with social ties and communication.

§ See http://www.web-strategist.com/blog/2007/02/12/list-of-white-label-social-networking-platforms/ for a
pretty comprehensive list which has been updated through 2008.

Groups | 153

http://www.web-strategist.com/blog/2007/02/12/list-of-white-label-social-networking-platforms/

The social contact formation tools you offer make a big difference in terms of the rate
of growth of your site and the types of social engagements that will occur. By this I
mean the type of “friending” you offer. The default pattern has become “asymmetric
follow,” which means “I can follow you, but that does not mean you have to follow
mean, nor do I need to approve your request to follow me.” There are several other
variations—among them automated follow and follow-back or request-based ap-
proaches—but there is a real benefit to the asymmetric model. It requires no additional
work on the part of the followed person; she simply gains more followers. It might not
be the right model for your application, but it should be the starting point.

Creating a successful social network involves tapping into a genuine need; you need to
get people to sign up and return to your site to create and share in something of value.
Depending on the area you are working in, the kind of approach you take will be dif-
ferent. The websites for Barack Obama,‖ Facebook, and Dopplr offer something very
different from one another, but all have a social network at their core. Social networks
are about two aspects in tandem: a group of friends and colleagues, and a shared set of
interests or an activity or item of content. The former is almost a given; it is trivial to
set up a networked address book. The hard work is determining the right approach to
supporting the activity the community wants to participate in.

Summary
Communities have many different reasons for being, and there are many different ways
to support them. You need to explore why you are hosting a community, then decide
which tools you need to support it. Your own community will probably not be a perfect
match for any of these examples, so you need to understand your motivation for cre-
ating a social application and how you will enable the members of that community to
interact with one another. The next few chapters explore issues regarding creating so-
cial networks and the mechanics of how to create successful ones.

‖ See http://www.technologyreview.com/Infotech/21222/?a=f for an analysis.

154 | Chapter 9: Community Structures, Software, and Behavior

http://www.my.barackobama.com
http://www.technologyreview.com/Infotech/21222/?a=f

CHAPTER 10

Social Network Patterns

People want to interact with one another. We are a social species. Solitary confinement
is, after all, a punishment. Doug Ruscoff put it beautifully at the O’Reilly Tools of
Change for Publishing conference in 2008: “Contact is king.” Content and context are
important, but social contact drives our society. So, if we are inviting people to our
websites, we should give them something to do that encourages social contact. Simply
installing a message board is not enough. Talk is fine, but its transitory nature can make
it a weak glue to bind a community together.

Sharing Social Objects
As we have discussed throughout this book, social objects provide a focus around which
people can interact. Even sites that cover the same general subject will have a very
different feel depending on which objects receive focus. Flickr, for example, started out
as a place to discuss photographs, not a place to discuss photography. Unlike its pred-
ecessors, it wasn’t a photo gallery, either.

The photography site Photo.net is a great place to discuss photography and a good
example of early content-driven social software. The site was founded in the late 1990s.
On the site, the links between the photographer, his discussions on the forums, and
his photographs are present, but the photographs tend to be shown in galleries rather
than as a regularly updated stream of photos. The same can be said of PhotoBase and
other gallery-led sites: they offer photographers the ability to show off their pictures,
but this capability is not connected to the lives of the photographers. These older sites
were also designed for smaller volumes of photography, coming from an age when you
scanned in your best pictures.

Making photography a narrative experience—a set of individual photos with their own
information as opposed to a set of galleries—created a different type of interaction. It
let Flickr keep up with the vastly greater flow of pictures from digital cameras, but also
moved the type of interaction away from critique of photography and toward

155

http://photo.net

commentary on the lives of the people who you knew on the site. This was a small but
significant change.

Relationships and Social Objects
Social applications are about who you know in a much more immediate way than any
other kind of website (by this I do not mean who you want others to think you know,
though that does happen). Social networks are about friendship and regular contact.
The kinds of interaction that you create on your website should support the real-world
social interactions that occur around your own content. I think it is really helpful if the
social interaction is connected to some content that is owned by your members. If they
have something they feel they own, they are more likely to come back to care for and
tend to their content. To put it another way, if you have spent time creating and an-
notating some content, you are more likely to respond if someone else comments on
your stuff, compared to a message board that you contribute to from time to time,
where the sense of involvement is less immediate and less personal.

A broader set of examples of social objects will help you understand:

• Jim and Chris are chatting about last night’s game, discussing the poor offence of
the home team. The game is the social object.

• Sarah and Jessica are having lunch and they discuss what to eat, and then move on
to their friend Claire’s love life. Their friend’s relationships are the social objects.

• Yvonne and Tim meet to review the work for the week in their one-to-one rela-
tionship. The projects are the social objects.

• Simon and Oscar are fighting over a toy tiger. The tiger is the social object.

• Hettie and Jacob are lunching in their retirement home. A letter has arrived for
Hettie with news of her granddaughter Monica. The letter about Monica is the
social object.

There are many other examples, but I think these give you an idea of the shared social
object between the actors in the situations. There is a lot of variety in what a social
object can be, but it is always something directly connected to the person or his inter-
ests. This gives a strong reason for people to care about the interactions around the
object. The interactions on a social network site come from the person’s friends in
general, but also from his wider circle of fans and acquaintances. This gives him a
directness and intimacy that is hard to fake. Note that the object is not passive. The
people around the object are always doing something with the content, even if it is by
reference.

156 | Chapter 10: Social Network Patterns

For more on social objects, see Jyri Engeström’s “The Case for Object-
Centered Sociality” (http://www.zengestrom.com/blog/2005/04/why
_some_social.html), Tom Coates’s “The Future of Web Apps” (http://
www.plasticbag.org/archives/2006/09/my_slides_from_the_fu/), and
Hugh MacLeod’s “More Thoughts on Social Objects” (http://www.ga
pingvoid.com/Moveable_Type/archives/004265.html).

Determining the Right Social Object
I’ve referenced the subject of modeling objects several times already in this book, but
at the level of the social object. A good social object is one that can be regularly created
by everyone on the site and has the potential for spurring open discussion about the
object or other person-to-person social interaction. Flickr and Twitter follow exactly
this pattern. Dopplr and Last.fm rely more on other forms of person-to-person inter-
action. A Dopplr trip might prompt two people to arrange to have lunch, for example.

Once you have a primary social object, a range of activities and secondary objects can
fit around it. The ability to comment is core to most social applications; similarly,
marking something as a favorite is a popular feature. Secondary objects usually stem
from aggregations of the primary object.

The primary and secondary objects might not be tangible, but they are still the focus
of your site. One of them should be the dominant object. Many of the sites in Ta-
ble 10-1 allow some form of discussion or other information generation, but there is a
primary object that stands out. The table also includes some secondary objects. Often
the activities lead to the generation of the secondary objects.

Table 10-1. Primary and secondary objects for common sites

Website Primary object Activities Secondary objects

Last.fm Music track Listening, commenting Artist, album, faves, recommendations

Flickr Picture or video Viewing, commenting Faves, places, groups

Dopplr Trip Coincidences Places, tips

Twitter 140 characters of wit, cynicism, or fact Posting Faves and hashtags; for example, #hifi

If you cannot determine what the object is or you have more than one, you are in a bit
of a quandary. It is probably time to reanalyze the activities of your community to
determine why you are asking the community to come to your site. Confusing conver-
sation about a social object is often the common problem here. The social object will
be the generator of conversation. Simply having the means for conversation without a
social object can lead to a lack of focus. In Flickr and Dopplr, it is clear that the primary
objects are the picture and trip, respectively. Once you have discovered your primary
object, then you can give it a home on the Internet.

Sharing Social Objects | 157

http://www.zengestrom.com/blog/2005/04/why_some_social.html
http://www.zengestrom.com/blog/2005/04/why_some_social.html
http://www.plasticbag.org/archives/2006/09/my_slides_from_the_fu/
http://www.plasticbag.org/archives/2006/09/my_slides_from_the_fu/
http://www.gapingvoid.com/Moveable_Type/archives/004265.html
http://www.gapingvoid.com/Moveable_Type/archives/004265.html

As Tom Coates wrote in “The Age of Point-at-Things” (http://www.plasticbag.org/ar
chives/2005/04/the_age_of_pointatthings/):

It’s like there are two views of the world—the solid one around us and the Matrix-style
flowing green lines one. In this second world, until you give a thing a name—until you
can point at it in greenspace—it simply doesn’t exist.

The concept of a fixed URL, which acts as an anchor for the social object, is important.
These are commonly called permalinks and are discussed in the next chapter.

Published Sites Expect Audiences
A photographer’s space on a gallery website often does not provide enough room to
involve the audience. The audience is likely unable to leave comments on each piece.
There is no direct personal involvement. The site is designed so that you can look at
the work, not leave behind your interpretation of it.

Likewise, a site for a band and their music is great for finding out about the artists and
their work, but such a site is often broadcast-only; the information is there to be read.
Any community endeavor is unlikely to involve the artists directly.

Newspapers are an interesting edge case, as they can turn the news into a social object,
but they tend to attract a very hardcore news junkie audience. The social object isn’t
necessarily the article, but the emotive issue, which will often attract polarized view-
points. A good magazine example is the What Hi-fi forums at http://whathifi.com/Fo
rums/. The editorial staff is heavily involved in the conversations on the site, which
makes the place feel very welcoming and open.

In all three of these cases, you can make the photographer or band or paper the social
object. This will work for a smaller subset of the audience, generally the committed
fan. Broader growth occurs when you give your audience some means of content own-
ership or creation. The broker of the connection can then move from being the host to
being the connections between the people on the site. This gives people a substantially
stronger reason to return to the site. The host’s attention is finite, so the direct con-
nection is weak. If the connection can be between the members of the audience, it can
be much deeper, as there is more attention to go around. There is no functionality on
these published websites for the intentionality of the audience; they cannot do anything
on the site other than passively observe.

On the professional photographer’s website, the task can be to commission the pho-
tographer, to allow people to admire his work, to allow people to purchase his work,
or just to provide information. On a social-object-based site, the photographs become
part of a conversation that involves the viewer, as the viewer has a direct connection
with the photographer. Jimmy’s photograph of Sarah on holiday with Kate is much
more meaningful for a particular group of people who know Jimmy, Kate, Sarah, or
one of their friends. The site moves from being about viewing and conversing about
photographs to telling stories about friends.

158 | Chapter 10: Social Network Patterns

http://www.plasticbag.org/archives/2005/04/the_age_of_pointatthings/
http://www.plasticbag.org/archives/2005/04/the_age_of_pointatthings/
http://whathifi.com/Forums/
http://whathifi.com/Forums/

The band Radiohead allowed listeners to remix the audio for two tracks from their
2007 album “In Rainbows.” Radiohead offered “Nude” and, later, “Reckoner” as
source files for people to experiment with. People bought the music and then got a
GarageBand file (see Figure 10-1) containing the separate tracks, which they could then
remix and upload to http://www.radioheadremix.com/. Nine Inch Nails (NIN), another
band (see Figure 10-2), offered a similar process and a wider range of music from their
catalog on http://remix.nin.com/. The NIN service is still active in 2009. Both bands
have offered the means for fans to get deeply involved in their music and create sharable
content that can be embedded and rated.

Figure 10-1. Radiohead remix site showing the most popular remixes of their track “Nude”

Deep and Broad Sharing
A quick personal aside: the attachment I have to Flickr is deep. Some of my most
significant personal events are told on the site. The photograph of the arrival of my first
son is one of my pictures on the site. I can take the picture and put it anywhere I want
to on the Internet, but I cannot move my friends’ reactions to his birth and put them
on another site because the event has already occurred. I can’t easily shift my friends
to another site, and I can’t make the people on my new favorite photography site relive
the experience of my son’s arrival. It is locked in time and space to Flickr.

Deep and Broad Sharing | 159

http://www.radioheadremix.com/
http://remix.nin.com/

Moments such as this are not something you as a site owner should actively chase
people to share with you; that would be a bit odd. However, enabling people to live
out part of their lives on your website will mean that this depth of involvement becomes
part of their experience on the site. You cannot make people share these personal mo-
ments. They will do this only if they feel comfortable with the site and the social rela-
tionships they have there.

Imagine someone who turns wood for a hobby. He creates turnings and shows them
to his friends as he creates them, building a relationship with each success or each split
piece of wood. His activity forms a dialog with a potential community, but the activity
comes first. These interactions will likely develop longer-term, deeper relationships.
Alternatively, he could have a trophy-cabinet-like photo gallery of finished pieces. The
reaction in this case would be less genuine and less frequent, as the readers have not
experienced the pain and joy of the person making the pieces.

This is simple group psychology: people like to feel involved. The enormous (and per-
sonally worrying) rise of celebrity culture stems from the incessant detailing of Britney,
Amy, or Jude’s life. We are meant to feel some connection because we see them drunk
in the street or we see what they wear every day. It works because people love to gossip.
You can make use of this need, but be sure to turn the focus to your readers and the
microcosm of their lives.

Sometimes the entity around which you would like to draw your community together
is hard to access. Arguably, there is a need for privacy whenever the social object is an

Figure 10-2. Nine Inch Nails audio source tracks in GarageBand for remixing

160 | Chapter 10: Social Network Patterns

entity of value—in particular, when it is in written form. In science, a discovery is
communicated in written form, so to publicly share it prior to publication is very risky,
and although the discovery of new knowledge is the exciting part, it is also the most
private (until it is published). Ideas remain valuable in science. On the Web, ideas are
cheap, but implementation is key. Thus, scientists are unwilling to share ideas that are
close to their experimental work. If ideas are valuable in your domain, such as new TV
show formats, you need to think hard about what social objects you can create a com-
munity around.

It is worth understanding why people share content online and how you can harness
their motivations for continuing to do this. Amazon’s Listmania service (see Fig-
ure 10-3) is a perfect example of harnessing people’s innate desire for social contact.
There is no financial reward for creating a list: the sole satisfaction comes from curating
a list of things you care about, which is visible only on the Amazon website, yet there
are thousands of these lists. People gain value from collating a list of books around a
subject area or tools for a hobby, and they perceive value from appointing themselves
experts in the area. These lists then become something they can maintain as their area
evolves, adding new books or tools, or removing ones they deem no longer appropriate.
Amazon also counts the number of times a list has been read, and each list can be
marked as helpful by people who have read it. This counting gives each person main-
taining a list a game in which to participate: who can have the best list.

Figure 10-3. An Amazon Listmania list for software development books

Deep and Broad Sharing | 161

People share for many reasons: they like to feel like an authority on a subject, they share
for altruistic reasons, they want to give away information, or they simply like to make
lists. Websites help us organize information, which helps us understand the world a
bit better. However, no one site can meet all of our needs for sharing and categorizing
information. There are hundreds of specialist sites—for instance, Cork’d for people
who like wine.

Tools such as LiveJournal, Vox, Tumblr, Dopplr, Delicious, Upcoming, Flickr, and
Last.fm all convey some aspect of my life to my friends. I noted in Chapter 5 that
conveying these aspects is easier if the social object is digital in nature. The data capture
is more straightforward than with analog media. A CD player is dumb compared to the
same track in iTunes, so connectivity is important, too. If we use the Internet a lot, we
end up with our lives spread across many sites, each with a different community,
something I’ll return to later in this chapter.

Capturing Intentionality
As I just mentioned, LiveJournal, Vox, Tumblr, Dopplr, Delicious, Upcoming, Flickr,
and Last.fm are useful in helping me to organize aspects of my life; these sites were
created so that people could participate on them. This architecture of participation
means I can, at a minimum, interact with others simply by putting content online. This
content is usually tagged, so it becomes part of a rich corpus that other people can
explore. This can generate network effects, as the many contributions create a greater
whole.

Successful sites are ones that people can use on a regular basis, without having to spend
a lot of time doing so. Add the means to find and follow friends plus search the content,
and you have the basis for interesting network effects to occur. These activities need to
be intrinsically useful and allow for easy discovery of other people’s content; otherwise,
you may as well perform the activity privately on your local machine. The driver for
getting people to place their content and activities with you is not that they can share
the content. Rather, it is the useful service, and the sharing is often a side effect. The
degree of attraction for sharing varies among domains. For Delicious, the bookmarking
tool, sharing is a side effect; for Flickr, the sharing fits with how we culturally use
photographs; for Upcoming, sharing and discovery is the main draw.

Each social application is capturing an intention to organize and communicate infor-
mation and is redirecting this from a solo activity into something that creates a greater
whole. The music I have listened to is recorded by Last.fm. I can see which bands I like
and which have fallen out of favor. On its own, this is useful, but when all my listening
habits are combined, I can gain much more. I can listen to the music my friends like or
get recommendations for new artists. The collective nature of the site encourages my
attention. I give the site something small and it returns that information as something
that is much richer.

162 | Chapter 10: Social Network Patterns

Often we share our content with other members of the site and, by implication, with
the rest of the world via search engines. However, we feel we are sharing our content
with a group of known individuals. Flickr is not a photography site, though it looks
like one at first glance. A critical aspect of why people keep returning to Flickr is that
the pictures are their friends’ pictures. Flickr tells stories about their friends. Flickr has
made it easy to add images to the site and easy to discover photos and friends. Strip
away the friends and what does Flickr offer? It still has a good set of photo management
tools and arguably acts as a backup service for your pictures, but the value at the heart
of the service is gone

Successful sites capture small, discrete activities for their community to take part in
and enable the social interaction in a manner that does not overwhelm the user.

A different example is Dopplr, a site for regular travelers (see Figure 10-4). The trip is
the key activity on Dopplr, but another activity is possible for the less well traveled.
They can subscribe to a calendar showing which of their friends are visiting their home
city. So, sites with a stronger focus on two-way interaction, such as Twitter, do not
work as well for passive members.

Figure 10-4. Dopplr London page showing upcoming trips from my friends

There is a strong curatorial aspect to a lot of social software applications: you’re either
creating your own collection of content or you’re managing a collection of content from
other people. Both Delicious and FFFFOUND! (see Figure 10-5) encourage a model of
adding content to a library. This requires less work than generating new content, so
the threshold for activity is very low, and thus it becomes easy to participate. Compare
this to the amount of work involved in writing blog posts or taking pictures. Both
Twitter and Last.fm also have a low thresholdfor participation.

Cohesion
One important factor in creating social web applications is the degree of togetherness
or cohesion that your community feels. This can be evaluated at several levels, including
the individual, the group, and the site:

Cohesion | 163

• For the individual level, cohesion comes from the personal connections to the peo-
ple the individual has chosen to connect with on the site. These people are her
friends and colleagues.

• At a group level, the sense becomes one of membership or belonging: “I take land-
scape photographs.” Natural subgroups can also come into play. A counterpoint
might be “I’m a fashion photographer, I’d never shoot landscapes.”

• At the site level, the cohesion is again about belonging and identity. Individuals
perform actions on the site that enable them to identify with the site hobby or
interest, and through these actions they discover others with like minds. They can
take on a collective identity, a concept called scibling for ScienceBlogs and
Flickerenes/ites for Flickr.

Making a noun and verb from the name of your site is surprisingly useful. If people can
identify with your site, you are in a good place. Avoid faking or astroturfing this; it
should be a genuine community activity.

Figure 10-5. An image stored on FFFFOUND!, which allows people to easily add images they find
on the Web to a personal collection

164 | Chapter 10: Social Network Patterns

Filtering Lists by Popularity
Social software creates lists, lots of them. You are going to want to display these lists
for the people using your site. However, some of the more obvious ways of doing this
are not ideal for a variety of reasons. Ideally, you want lists that change over time. Simple
lists of the most popular tags on a site tend to become quite static once you have a
decent level of traffic.

Another aspect to consider is lists with a scale, whereby being high on the list is seen
as being good, people will try their utmost to be first on the list. This instinctive urge
to compete can lead to people changing their interactions with the site to get themselves
on the list, as opposed to how they’d normally use the site.

Say you had a recently updated profile page, with each profile ranked based on the
frequency of edits and then the top three of these were featured on your home page. A
person can manipulate this profile page editing system with just a minor edit. Adding
or removing a single space will appear to be a legitimate edit, but he is really just faking
activity. This person will often be on your home page as his page appears to have
frequent edits, albeit he is just manipulating spaces. He is not really contributing some-
thing to the site, but rather is doing something for self-promotion. If you have lists, you
want people to appear on them because they are actually contributing to the
community.

The algorithms for tracking these lists and filtering out the manipulations can get quite
complicated, as they tend to track multiple factors (single factors are much easier to
manipulate directly). Programming Collective Intelligence by Toby Segaran (O’Reilly)
has great examples of how to run complex analyses of these kinds of lists. It also dis-
cusses some algorithms that you should find useful in managing lists. In the following
subsections, we’ll analyze some typical kinds of lists and some useful factors you might
want to track on your site. (The Flickr interestingness algorithm is another excellent
example of this in action; we’ll explore it in more detail in “Calculating Popularity
Across a Site” on page 168.)

Filtering Lists to Show Recent Content
There are many reasons to have a list of recent actions on your site. A list is one of the
easiest ways to show fresh content on the site. Recent lists are also the most vulnerable
to abuse if implemented in a simple manner. Sadly, you need to think about every list
on your site in terms of how it might be misused, inadvertently or not.

Let’s start with the most basic and simplest implementation and show the work re-
quired to create something better. We will look at a profile update tracker. The phrase
“last five updates” can have a lot of different meanings, depending on how your system
is implemented. For instance, the five updates could be five changed pieces of infor-
mation all from the same person. A basic implementation would treat these changes as

Filtering Lists by Popularity | 165

http://oreilly.com/catalog/9780596529321/

different updates and then the person would be listed five times. So, we need to aggre-
gate information together to represent a person.

In another scenario, the person updates her publication list with three new publica-
tions. Is that three publication entries or one composite entry? The answer depends on
the context of the page. If it is her page, all three publication entries would be listed. If
the publications are for a group she belongs to, perhaps all three entries should be listed.
If the publication entries are being put on a main section page, probably just one of
them from that person should be listed. As you can see, there is a need for balance in
terms of the amount of information displayed on public and personal sections of a site;
on the public section of the site, content from other people needs to share the page. On
the site and section home pages, which are commonly the most highly trafficked indi-
vidual pages on a site, you will want to show off the best content for the site, not just
any old updates. These pages act as a means to convince new people to come and join
the site.

Personal aggregated streams of content also need careful thought. These rivers of news
views that show the updates from the people you follow on a social network can easily
flood the reader with content. The name varies from site to site: Dopplr calls them a
journal, and Nature Network calls them a snapshot; the name varies. Most sites will
show you everything your community generates. In this regard, it is worth discussing
further how Facebook and Flickr handle content. For instance, Facebook operates a
black box model to news feed stories. You can alter various parameters, but it is im-
possible to guarantee that any one of your friends will see a particular update (see
Figure 10-6). This has an advantage in that it allows for deniability, but the lack of
control frustrates many people. Facebook changed to a real-time 100% delivery model
in early 2009.

Flickr, on the other hand, takes a different approach to feed management, one based
on volume of pictures (see Figure 10-7). It is possible to turn off photos from contacts
and reduce the number of photos from five per person (the default) to one per person.
However, it is not possible to get every photo from everyone you follow; you can get
as many as the most recent five from everyone. Given that people often upload large
batches of photos to Flickr, this is a fair and content-sensitive approach. How far back
you allow people to go in an activity page is something else you need to determine. You
can find more on this in Chapter 13.

Nature Network, meanwhile, offers a river of news aggregation service that spans mul-
tiple content types. Launched in June 2006, the service offers a simple view of every-
thing that has happened from your network on the site. Over successive launches, we
added new content types, forum topics, and replies. We also removed group join no-
tices and aggregated replies to the same topic. These changes came from growth in
community size, experience using the site, and feedback from the community. The
growth-driven changes are noteworthy: the tools that work well when there are hun-
dreds or a few thousand people become cluttered when there are tens of thousands of

166 | Chapter 10: Social Network Patterns

people or more. However, building community features that are scaled to support
thousands of interactions can feel too big in scale if the actual community size is small.

Understanding the need to view updates will guide you in putting the right number of
updates with the right level of detail on the right page. On personal pages, you can use
more detail and more updates; on public spaces, you will want less detail. Offering a
minimal view and linking to a more detailed view can work well in many cases. Ideally,
you are supporting “at-a-glance” viewing of content, with the option to delve deeper.

One last point of complexity: many people will want to follow along with the site via
a feed, either in an RSS reader such as Google Reader or NetNewsWire, or increasingly

Figure 10-6. Facebook news feed preferences

Figure 10-7. Flickr from your contacts settings showing the ability to alter the volume of photos seen

Filtering Lists by Popularity | 167

in a widget start page such as NetVibes or iGoogle. Making a feed from the activity
page seems like a simple idea, but it means your activity page must comprise a single
list. This is not a bad thing; a single date-based list of activity is easier to scan than
several lists. The complexity comes from any possible nesting you might do. If there
are seven comments on a post and you collapse them on your activity page, make sure
you collapse them in a similar manner for the feed. Ensuring that the same content
appears in the feed as on the web page is a good idea. Otherwise, people depending on
the feed will miss updates.

Calculating Popularity Across a Site
Tracking what is popular on your site is an obvious thing to want to do. Almost every
site has some form of Popular page. Building a Popular page so that it is resistant to the
influence of individuals determined to be on this page can make the page complex.
Basically, you want to show the content that lots of people are currently looking at or
rating. So, you want some content that is getting a lot of views from a wide range of
people. You need to factor time into this so that the list can reflect current popular
items, not all-time-popular items.

A robust popularity system can be a major feature for a site. The Popular pages of Digg,
Delicious, and Flickr show some of the best content on those sites and the pages are
justly very popular. For Digg and Delicious, these pages are the site’s main features and
showcase some of their most interesting content. Since these sites are large and suc-
cessful, they have a lot of content to draw on. Making a popularity list soon after you
have launched can be much harder, as there is not enough data to calculate a robust
measure of popularity.

There are many downsides to popularity lists. Popular pages can create self-
perpetuating lists, as people see the popular items and then alter their own lists to either
maintain or achieve a position on the Popular page. People will also try to figure out
your algorithm so that they can stay on the list, which can create unwelcome behaviors.

A good starting point for a Popular service is that the originator of the content cannot
influence the popularity of the item he created. A simple Popular service would count
every view of the item of content; however, this would allow an individual to repeatedly
view her content to bump up her rankings. Discounting the views of the creator means
that only other people’s views count. There are other, subtler things the creator can do;
however, posting content to many groups is a common behavior to encourage views.

Flickr has a technique called interestingness that powers its Explore section. This is a
good example of the kind of complexity that a popularity system can require. Flickr
initially did not have a Popular Pictures section; it launched the interestingness feature
in August 2005 (http://blog.flickr.net/en/2005/08/01/the-new-new-things/), more than a
year after Flickr launched. Waiting allowed Flickr time to collate a lot of data and test
ideas regarding how the system should work. What it eventually released was the result

168 | Chapter 10: Social Network Patterns

http://blog.flickr.net/en/2005/08/01/the-new-new-things/

of much internal experimentation. The feature recalculates the interestingness of the
daily uploads to Flickr everyday, so the relative position of photos changes over time.

This discussion draws on conversations with Cal Henderson and Kellan
Elliot-McCrea from Flickr, as well as various presentations from other
Flickr staff members. I’ve not seen any code or implementation details.

One mistake the Flickr team admittedly made when they first launched the interest-
ingness feature was to allow visitors to rank the pictures. This was the only public
ranked listing on the entire site. Some people did not like the introduction of such
explicit competition, while other people immediately started to hack the feature to get
as many of their pictures on the interestingness pages as possible. Posting to many
groups was one of the undesirable behaviors that resulted from this. People started
joining groups just to put pictures in front of other people, not to participate. A later
iteration of interestingness dropped the overt ranking.

Stamen Design, a San Francisco-based agency, has done some visualization work on
Digg’s Popular pages (http://stamen.com/clients/digg). Visit labs.digg.com to see some
of the work Stamen has been doing regarding real-time visualization of the activity on
Digg. This is different from a text list of popular content; rather, it is an attempt to
show how the community is actually behaving. This real-time interface works well for
news stories, but probably wouldn’t work as well for other content. Watching the stack
visualization (http://labs.digg.com/stack/), as shown in Figure 10-8, for a few minutes
gives a good sense of what the community thinks is important right now, something
that is impossible to see on the main site.

Commenting, Faving, and Rating
Determining popularity and real-time interest is great for showing aggregate popularity
on a site, but personal interests and interactions are also important. Several tools that
allow for one-to-one social interactions are described in the next section.

Commenting
The most obvious tool is commenting, which is the ability to leave text comments on
items of content created by others. This is probably the dominant means of social
interaction on many sites. It is also one that you should probably custom-build for your
site because this will give the closest fit to your own content.

Commenting, Faving, and Rating | 169

http://stamen.com/clients/digg
http://labs.digg.com
http://labs.digg.com/stack/

The blog evolved from a regularly updated home page, gaining archives along the way;
comments were a later addition. Indeed, many famous blogs, such as Kotkke.org and
Daringfireball.net, rarely or never have comments. Some people turn them on only
selectively.*

As a primary means of commenting, the provision of a simple email address suffices.
The TrackBack system originated from this way of thinking. Essentially, TrackBack
supports the idea that “I’ll write a blog post in response to your blog post.” TrackBack
is an automated mechanism that notifies a blog when a new article on another blog
references it. Commenting does not define blogging, any more than permalinks do; it
is the combination and selection of these elements that make the medium effective.
The other primary source of commenting behavior comes from message boards; some
blogs behave much more like a message board with hundreds of comments per new
post. The Guardian’s “comment is free” system behaves like this (see Chapter 5).

There are three key characteristics of a good commenting system, beyond the mere
ability to leave a comment:

Figure 10-8. Digg Labs’ stack visualization, which shows real-time “diggs” on stories (created by
Stamen.com)

* At http://a.wholelottanothing.org/2008/08/27/becoming-an-old-blogging-man/, Matt Haughey explains why it
is not a good idea to allow comments. John Gruber described why he doesn’t have comments in a podcast;
the relevant transcript is on http://shawnblanc.net/2007/why-daring-fireball-is-comment-free/. Essentially,
both Matt and John feel that comments should be made via email or on your own blog.

170 | Chapter 10: Social Network Patterns

http://kotkke.org
http://daringfireball.net
http://www.sixapart.com/pronet/docs/trackback_spec
http://stamen.com
http://a.wholelottanothing.org/2008/08/27/becoming-an-old-blogging-man/
http://shawnblanc.net/2007/why-daring-fireball-is-comment-free/

• There must be a clear link between text identifying the person leaving the comment
and the person’s profile on the site. Unlike blogging, generally everyone on a com-
menting system has a profile on the same site.

• There must be an ability to easily follow up on further comments made, which
helps to maintain conversation. This pertains to both the person whose content is
being commented on and the people leaving the comments. It is just as important
to notify the people who have left comments that they have received comments
themselves.

• The person who owns the item of content needs to have tools that allow him to
control which comments appear on his content. He should be able to delete any
comment left by another person on his content.

It is icing on the cake if you can allow a person who left a comment to edit it. Note that
it is important to mark such edited comments, typically with a system-generated time-
stamp and the word Edited. Showing which comments have been changed is important
because it makes it clear when someone has altered what he previously wrote. If some-
one writes something heated and then retracts it later, the responses that immediately
follow the heated comment will not make as much sense if there is no signal that the
heated post was changed.

A preview mode for the comment creation can also be very helpful, particularly if you
decide to allow links or other pieces of HTML on your site. Many systems use a simple
text markup language such as Markdown or Textile for this.

Faving or Marking As Favorite
Commenting can be a very effective way of facilitating interaction among members of
your community; however, there are great benefits to be seen from non-text-based
interactions as well. Marking something as a favorite is probably the most common of
these. There are several others: “add to library” on Delicious, “liking” or “marked a
place as has been” on Dopplr, “sharing” on Google Reader, and One-Click Purchase
on Amazon. These are low-cognitive-overhead activities, meaning there is no need for
a long interaction; instead, you just click and move on. There is no text to be entered,
as there is with tagging or commenting. On Twitter, the act of faving posts from other
people is quick and simple, and works well within the list view or over the API.

The star has become a common icon for marking something as a favorite, closely fol-
lowed by the heart. Typically, the icon is an outline and the act of clicking changes the
color and fills in the icon. The icons then appears in the activity list for the person who
owns the content. Essentially, it sends an “I liked this” message to the creator. For the
person who marked it as a favorite, the item gets added to a list of other favorites, acting
as a service-centric bookmarking tool. Some services—such as Delicious,
FFFFOUND!, and Flickr—make this list of favorites public (see Figure 10-9), and if
you decide to do so on your site, it is essential that you explicitly communicate to your

Commenting, Faving, and Rating | 171

users that their favorites will be public; it is not always immediately clear to people that
others can see their favorites.

Figure 10-9. Notification in a Flickr activity stream that people like this picture of spices

I mentioned earlier in the book that we can make more of these collated lists of content,
as they capture the best content from the site for that person. There are two ways to
use these lists: as the basis for further recommendations and as a list of content with
which users can be invited to do more things. If you view the act of marking as favorite
as a save-for-later activity, you can offer a range of contextual actions for your users to
perform. Republishing is one possibility, but so is resharing the content with other
groups or individuals. This latter activity works well with events, as there is no con-
tention over ownership of the content.

Better management tools are required for favorites. The default listing is a list of content
in reverse chronological order. Some sites allow searching within your favorites. Dis-
playing associated tags or showing people whose content you have marked as a favorite
would be helpful in gleaning more value from favorites.

Looking briefly at desktop applications, there are many related actions that can be done
on RSS feeds. NetNewsWire, as shown in Figure 10-10, shows half a dozen specific
activities for a single feed. Desktop applications have a rich interface potential. Web
applications have less opportunity to offer this richness, but they seem to rarely offer
even a few of these. Consider what activities people might want to perform with the
items they have marked as a favorite, and then add these as options to the View Favorites
section of your application.

Rating
Rating content also falls into the category of activities requiring tools with low cognitive
overhead. Rating on a five-point scale (known as the Likert scale, http://en.wikipedia
.org/wiki/Likert_scale) is fairly common, alongside a simple yes/no rating. When used
as a voting mechanism, it can be effective. For instance, Digg uses the rating system to
show the popularity of its news items. Amazon uses the scale for rating products. You
need to carefully think about whether you want to include a rating system on your site

172 | Chapter 10: Social Network Patterns

http://en.wikipedia.org/wiki/Likert_scale
http://en.wikipedia.org/wiki/Likert_scale

so that you don’t change the dynamics of your community. Imagine Flickr with a rating
on each picture; it would be quite a different place. This is why I view rating as a separate
social activity from favorites. Giving people the ability to express dislikes as well as likes
means people can overreact to the negative and attempt to game the positive. Rating
means competition among your community, which you might want, but can be un-
healthy. Think carefully before you add a negative rating system. Even a ranked positive
system such as gold, silver, and bronze can leave the bronze rating looking like a neg-
ative comment.

Rating content that is not community-generated, as Digg does in general and Amazon
allows, can work well, but remember that many people will see your site as a compet-
itive environment.

Internal Messaging Systems
When you’re developing a website, at some point someone will suggest a personal
messaging service so that your participants can talk to one another privately. And al-
though there are advantages to having such a service, you must consider the disadvan-
tages as well. Private messaging is basically like creating an internal email system, and
everyone on your site has email already. Sometimes people want to create personal
messaging services as a means of driving return traffic to their site. Thankfully, this is
on the wane. For instance, when you receive a message on Facebook, you no longer
get just an envelope; instead, you now receive the content of the message as well.

Figure 10-10. NetNewsWire news contextual menu showing possible actions for a news item from an
RSS feed

Internal Messaging Systems | 173

Receiving notification that there is a message waiting for you is like getting a card saying
you missed a package delivery; it’s annoying. It may drive traffic to your site and gen-
erate ad impressions, but it is just as likely to drive your users away.

Building private messaging so that it integrates well with existing communication serv-
ices such as email and SMS is important, as more people will be likely to adopt it. One
approach is to allow people to use their existing tools: they can choose any recipient
in their network, similar to what Twitter offers. The other approach is to allow people
to send a message from their profile page. In this case, the mechanism is connected to
the person. The former works well for Twitter, as Twitter is primarily about commu-
nication, and the latter works well for the majority of sites, so we will focus on that
mode. Preserving privacy and ease of use are critical features for any private messaging
service.

You must give people on your site the ability to opt out of or limit any unsolicited
communication. This can be as simple as clicking a button that prohibits others from
sending them messages; for example, on the Nature Network site (Figure 10-11), click-
ing a checkbox turns off outside messaging and allows receipt of messages only from
Nature Network members (the feature is off by default). The choice for your application
may differ, but allowing opt-out is important.

Figure 10-11. Nature Network personal messaging opt-in preference setting

It is important to notify people when a message is waiting for them. By far, the most
common means for this is to send an email, though sending an SMS or text message to
a phone is becoming more common, but has associated costs. The email should contain
the content of the message and a link to respond to it. Giving away someone’s email
address is not desirable (for the recipient or the sender). So, you need to be careful who
you set as the From: and Reply-to: addresses in any emails you send; these should not
be the personal email address of the member who is sending the message. Your
application is generating and sending the message, so this gives you a great opportunity
to get this right.

One approach that 37signals (and others) have used to create a useful messaging system
is to allow for replies from a web-based exchange via email. Every message comes from
a unique address that corresponds to a conversation, and the entire conversation is
archived on the Web. So, it is possible to use email to simply respond to the message.
37signals uses this approach in its Basecamp project management application (see http:
//37signals.blogs.com/products/2008/04/new-basecamp-fe.html). No one needs to see

174 | Chapter 10: Social Network Patterns

http://37signals.blogs.com/products/2008/04/new-basecamp-fe.html
http://37signals.blogs.com/products/2008/04/new-basecamp-fe.html

any actual email addresses, and there is an archive of all messages for that conversation
in one place on the Web, instead of being lost in an email inbox. This is a good design
pattern to copy. Extending this a little, it is worth allowing multiple email addresses
for individual people so that your members can have these notifications sent to a sep-
arate email account if they wish. Supporting multiple email addresses per account is
generally a good practice anyway, as people change jobs, and they are known by dif-
ferent email addresses—for example, their home and work email addresses.

One unfortunate use of personal messaging is as a spamming mechanism. If you allow
personal messages to be sent on your site, some people will abuse this capability. One
way to curtail the abuse is to make the ability to send a message dependent on another
factor. The simplest system is one in which any signed-in member can send a message
to another signed-in member. The next level allows people to opt out of this feature,
making this more palatable for many. The level after that is requiring that an established
relationship exist before messages can be sent. A two-way relationship is an obvious
choice. Twitter allows for an interesting variation—if I am following you, you can send
me a direct message, but if you are not following me, I cannot send you a direct message.
This asymmetric system works well, as it allows personal replies to a broad audience,
without the load of following everyone back. Further curtailment can come by making
the ability to send messages based on length of service, meaning it is not something
you get immediately on sign-up (note that this can be off-putting to new members).

Some communities will want personal messaging available earlier and require it to be
private, whereas for other communities private messaging will be covered by email or
Instant Messenger. Personal messaging places another level of responsibility on your
site: if you can encourage people to use email, you can keep your application focused
on doing useful things. Dopplr, for example, could have built an internal personal
messaging system for contacting people about trips, but instead it uses email (see Fig-
ures 10-12 and 10-13). Once this email is sent, all the replies will occur via email, as
opposed to being hosted on Dopplr. Hence the emails come from the sign-up address.

Figure 10-12. Dopplr trip page offering an opportunity to send an email to specific people in New
York, with names removed for privacy

Internal Messaging Systems | 175

Figure 10-13. Dopplr trip email introductory text, explaining that the email will come from the sign-
up address

Friending Considered Harmful
Dopplr’s design director, Matt Jones, coined the expression “friending considered
harmful,” and it neatly sums up a problem with current social web applications. The
intent of most sites should be to share experiences and information, but the focus is
often on growing your social network. “Friend” is an unhelpful term. If a certain person
is your friend, other people must be something else. The concept of “friend” can be
useful in terms of privacy, but there is already a level of privacy between members and
non-members of a site.

Shared activity can be much more useful than determining the difference between friend
and not-friend. It does require a change in language on the site. Sharing is a useful word
to describe what is happening. It might seem like just playing with words, but it shifts
the emphasis to the activity on the site. A flat privacy model makes for an application
that is easier to understand, too.

Privacy is an issue, but you can deal with it by creating subgroups of people from your
list. If you want to share something with a specific set of people, it can be easier to have
a named list of known people with whom you want to share. Reciprocation of friending,
a common social cue, will blur the boundary of friends versus contacts. This is due to
the impoliteness of responding to a “friending” with a “mark as contact.” Your network
now has people who think you are a “friend” and you might have originally added them
as a “contact.” FriendFeed has even created the odd capability to allow “fake friends.”
You can add someone, but not receive any of their updates, and they get a confirmation
that you are “friending them back.” Merlin Mann comments on the ludicrous nature
of this idea, saying, “this is a major breakthrough in the make-believe friendship
space.”†

† http://www.43folders.com/2008/08/26/pause-button

176 | Chapter 10: Social Network Patterns

http://www.43folders.com/2008/08/26/pause-button

Named lists make this a lot easier socially. You control who is on your list, and they
get to see some specific material. Ideally, though, you should keep to one level of re-
lationships. It makes development a lot easier, as maintaining even a two-level system
of friend and contact requires a lot of special case code.

Sharing Events
Many other kinds of sharing are possible on the Internet. One other area I want to touch
on is event and conference management. The very nature of these time-based objects
means they have a different consumption profile than something such as a photograph.
We cannot be aware of a photo before it is created. It is taken, uploaded to a site, and
then we can experience it. However, an event has a phase during which people can
decide whether to attend or not. Also, once an event is over, it is no longer possible to
attend it, so the chance to participate with the object is different for an event compared
to a photo, a song, or even a TV program (a TV program or film can be repeated).

The consumption profile for an event is from the future to the end of the scheduled
time for the event. For virtually everything else, it is the other way around. It moves
from “it will happen” to “it has happened.” There is then the possibility to react to the
event, just like we can react to seeing a photo. In Chapter 5, we looked at different types
of media and how we handle them in the world. Events can be seen as a different type
of media. There are a range of verbs we can use to describe our interactions with
them: attending, sponsoring, speaking, organizing, and missing are some of them.

There are many ways to approach social interaction around events. Upcoming allows
anyone to list an event, and people can then mark the event as “interesting” or “at-
tending.” Other software treats the community around the event as a collective whole.
For instance, CrowdVine allows attendees of an event to import external data such as
Twitter streams or Flickr photos onto a profile that is populated by answering a few
relevant questions. CrowdVine sites generally are ephemeral in nature, in that they last
for the duration of the event, and then people export data from them back into their
core network. See http://blog.crowdvine.com/2008/08/29/crowdvine-vs-ning/ for a dis-
cussion of how CrowdVine differs from generic social software.

Summary
Finding the right activity and social object around which to build your site is much
more important than the tools to grow your community. From the immediacy of Twit-
ter to the slower but valuable exchanges of Dopplr, finding the right balance is difficult.
Social objects and verbs are the important takeaways from this chapter: find the thing
that people are willing to share and give it a handle. Enable the right verbs for these
objects to become something that can be the focus of interactions among individuals.
Along the way, build something that is of initial use to a single person. Do not start
with a “social network;” instead, enable one to evolve.

Summary | 177

http://blog.crowdvine.com/2008/08/29/crowdvine-vs-ning/

CHAPTER 11

Modeling Data and Relationships

Turning things, people, and relationships from ideas and sketches into social objects
on the Web means creating URLs that people can use to access them. You need to
represent these social objects in a data model, mapping the people, for example, to a
series of user ID fields, and then linking these user IDs to the videos they have uploaded
and the comments they have made. Behind the URLs is a database that holds the rela-
tionships between all of these items.

People, location, and group membership can seem simple to model at first glance. A
person has a name and a login ID, probably a profile, and an avatar image. However,
locations can change when you factor in time as a variable. Do you keep the current
location only? The answer will depend on the type of application you are developing.

Anyone coming to your application will need to use a URL to access the social inter-
actions and content on your site. If you create these URLs without any thought, you
can end up with a site structure that is hard to understand. Good URL design is a key
starting point for good data modeling.

Designing URLs
In the late 1990s, the rush of people and companies to get online meant that well-
meaning guidelines were largely ignored and people created URLs any which way they
wanted. Tim Berners-Lee wrote some good guidelines early on for how to manage URLs
(see http://www.w3.org/DesignIssues/Axioms.html and http://www.w3.org/Provider/
Style/URI), but it wasn’t until the dot-com crash in 2000 that there was time for re-
flection and a new focus on making the Web a high-quality place, rather than a shanty
town.

A URL can be seen as a name for a thing; if you change the name, you lose the thing.
This does not generally happen with books or places, so it should not happen online
either. With that in mind, three particular problems are common when people create
URLs without regard to any design guidelines:

179

http://www.w3.org/DesignIssues/Axioms.html
http://www.w3.org/Provider/Style/URI
http://www.w3.org/Provider/Style/URI

Reference
You will change your technology at some point; the script names and languages
will not be the same, and this means URLs will no longer work. So, using a current
function name and the templates to include, or referencing the current software
implementation such as /cgi-bin/script.pl, is not a good idea. A change in technology
will result in lots of broken URLs.

Transience
Too many URLs change after they are published. This is particularly true of news
sites, but also true of advertising microsites, which disappear. Poor maintenance
practices also lead to changing URLs. There should be no reason to change a URL,
so pick a good one when you first create it. At a minimum, provide a redirect to
the new location, if you must change it. Your site will hopefully be full of interest-
ing, exciting content that other people will link to; if your URLs change, these links
break. Also, search engines index content at a specific URL. Carelessly change the
URL, and your content will drop out of the search engines.

Uniqueness
An object should have one and only one unique or canonical URL that represents
it. Presenting multiple URLs that claim to be the same object can mean different
people will use a different URL to link to your object. Keeping to one URL means
everyone links to the same one, and algorithms such as Google’s page rank will
score all the links against that one place.

In Chapter 16, I talk about URLs in more detail, but for now it’s important to know
that you need to think about the design of your URLs. Weird characters such as pa-
rentheses (which are common on Wikipedia) and commas (Vignette StoryServer is
guilty of this) make for odd URLs. They can break in email clients that are not expecting
commas or parentheses as part of a URL.

Dan Connolly’s 2005 article, “Untangle URIs, URLs, and URNs,” at
http://www.ibm.com/developerworks/xml/library/x-urlni.html, gives a
recent overview of what’s happening with URLs and related
technologies.

Getting to the Right URL
In February 2009, Google announced a new link element for defining a relationship
between entities on the Web. The canonical element is meant to help with the problem
of multiple URLs pointing at the same object (http://www.google.com/support/webmas
ters/bin/answer.py?hl=en&answer=139394). This is particularly an issue with query
string parameters:

<link rel="canonical" href=
 "http://www.example.com/product.php?item=swedish-fish"/>

180 | Chapter 11: Modeling Data and Relationships

http://www.ibm.com/developerworks/xml/library/x-urlni.html
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=139394
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=139394

Another issue with URLs is the widespread use of link-shortening services. TinyURL
is one of the more famous of the early entrants into this area. Link shortening came
about because the long URLs that were being created in the 1990s wouldn’t work in
many email clients without wrapping. Twitter, with its 140-character-per-message
limit, drove a rapid increase in the number of link generation services.

This has led to a new problem: a proliferation of shortened URLs that point at the same
things on the Internet. Sometimes the same URL will have half a dozen shortened URLs
pointing to it. A solution is to create a means to point at the main link, much in the
same way that the earlier rel="canonical" defines the primary URL.

The initial proposal was to use the previously obscure rev element from HTML that
declares a reverse link relationship. Unpacking the rev link element states that the
canonical version of the URL this HTML document points at is the one in the link
rev header. So, http://bit.ly/ILMg, which links to http://oreilly.com/catalog/
9780596518752/, could contain:

<link rev="canonical" href=" http://oreilly.com/catalog/9780596518752/">

The rev canonical proposal came from Flickr’s Kellan Elliot-McCrea (http://laughing
meme.org/2009/04/03/url-shortening-hinting/), based on conversations with Google’s
Kevin Marks. Conversation continued in early 2009 with concerns about links breaking
on the Internet as a result of link-shortening companies going out of business (see http:
//joshua.schachter.org/2009/04/on-url-shorteners.html). RevCanonical is an application
that can test whether a page has a canonically shortened URL defined for it. For in-
stance, it can tell you that http://www.flickr.com/photos/gavinbell/35378445/ has a
shortened URL of http://flic.kr/p/48jMc already defined for it.

Permalinks
People need to be able to address social objects, to find them again and share them, in
order to build conversations around them. The shift from galleries to individual photos
took advantage of a key idea emerging on the Web: the permalink. Jason Kottke (http:
//www.kottke.org/00/03/finally-did-you-notice-the) and Matt Haughey (http://a.whole
lottanothing.org/2000/03/caroline_wishes.html) were instrumental in popularizing the
idea that a blog post should have a permanent URL. The idea stems back to Tim
Berners-Lee’s writings at the W3C; his essay at http://www.w3.org/Provider/Style/URI
is still very relevant now. Here is a short excerpt from the essay:

Cool URIs don’t change.

What makes a cool URI?

A cool URI is one which does not change.

What sorts of URI change?

URIs don’t change: people change them.

There are no reasons at all in theory for people to change URIs.

Permalinks | 181

http://tinyurl.com
http://bit.ly/ILMg
http://oreilly.com/catalog/9780596518752/
http://oreilly.com/catalog/9780596518752/
http://laughingmeme.org/2009/04/03/url-shortening-hinting/
http://laughingmeme.org/2009/04/03/url-shortening-hinting/
http://joshua.schachter.org/2009/04/on-url-shorteners.html
http://joshua.schachter.org/2009/04/on-url-shorteners.html
http://revcanonical.appspot.com
http://www.flickr.com/photos/gavinbell/35378445/
http://flic.kr/p/48jMc
http://www.kottke.org/00/03/finally-did-you-notice-the
http://www.kottke.org/00/03/finally-did-you-notice-the
http://a.wholelottanothing.org/2000/03/caroline_wishes.html
http://a.wholelottanothing.org/2000/03/caroline_wishes.html
http://www.w3.org/Provider/Style/URI

The permalink gives the piece of content a handle, a means of allowing interaction with
the world. You can attach comments to it, you can reference it from other websites,
you can put it into other social systems, and you can query it. In the case of Flickr, the
connection between the pictures and the person is direct and immediate. The display
of pictures as a reverse chronological list is heavily influenced by the permalink and
blogging.

Putting Objects on the Internet
Many of the things we turn into social objects are already native to the Web or are
digital in form. Most people’s pictures and music are digital. However, the more ob-
vious media consumption-led services such as Flickr are not the only kinds of social
software services it is possible to create.

It is also possible to take data from sensors and put it on the Internet. For example,
information regarding the electricity consumed in my house is available online at http:
//pachube.com, via a current cost meter, a device that tracks energy meter usage. Pa-
chube is a data aggregation service for sensor and machine-generated data. It makes
pretty graphs such as the one shown in Figure 11-1. Using this combination of data,
the energy consumption for my house can be aggregated into other services such as
AMEE, another data service. AMEE is aimed at tracking energy usage worldwide. My
electricity consumption becomes part of the Internet through these two services.

The more obvious media consumption-led services such as Flickr are not the only kinds
of social software services it is possible to create.

Determining what gets a good URL and how the actions around that are expressed can
be a bit of a black art. The primary object needs to get a unique identifier, and it needs
to be associated with the person who created it. When you take into account the actions
that are possible around that content, you need to map those to the software that runs
your site. All of this must be done while generating a URL that meets the qualities I
described.

A typical solution has been the Apache mod-rewrite module that can take otherwise
awkward URLs and create clean URLs from them. In addition, routes in Ruby on
Rails have helped the cause of clean URLs a lot by integrating the URL design into the
application layer. Designing decent URLs requires a different skill set from designing
interfaces and page layouts. Generally, the task falls to some combination of informa-
tion architect, lead developer, and product manager. Attaching accurate URLs to wire-
frames whenever they are being discussed will help to bring other people on board.
URLs are invisible to most people, so you need to make people see them, before they
will engage with the design of them.

Not every URL on the site needs to be perfect and clean, but URLs for your important
objects, such as people, places, and social objects, should be clear, short, and if possible,

182 | Chapter 11: Modeling Data and Relationships

http://pachube.com
http://pachube.com
http://currentcost.com
http://amee.com
http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/routing.html

meaningful. Any URL that corresponds to an action that might be sent via email or be
bookmarked should be properly designed.

Append the URL of the page at the top of every wireframe or mock that
you work with. People will see the URL and start to think about its
design as part of the design process.

Short URLs are better. URLs with more than about 60 characters will break in an email.
With the caveats noted about URL shorteners, you should consider creating one for
your application. Dopplr with dplr.it and Flickr with flic.kr have already done this.
Analyzing your web server logs for 404 errors (File Not Found errors) can tell you
whether you have broken URLs already.

The following are good URL patterns:

http://www.dopplr.com/trip/person/trip_id
http://www.flickr.com/photos/person/photo_id/
http://www.last.fm/music/artist/album_id

Figure 11-1. Pachube.com visualization of current cost meter data from my house; the big spikes
represent the kettle boiling

Putting Objects on the Internet | 183

http://dplr.it
http://flic.kr
http://www.dopplr.com/trip/person/trip_id
http://www.flickr.com/photos/person/photo_id/
http://www.last.fm/music/artist/album_id
http://pachube.com

These are all simple and effective URLs for people or objects; they are called hackable
URLs. Chop off the “id” and you have all the objects related to the person for Dopplr
or the photos for that person on Flickr.

Hackable is a positive attribute for a URL. It means that it is human-
understandable and can be easily modified. Usually, these URLs have a
clear pattern and a structure that allows for guessable combinations.

Another interesting example of URL design is Oakland Crimespotting, (http://oakland
.crimespotting.org), which scraped the Oakland (California) Police Department’s web-
site to visualize crime in that particular neighborhood. (Subsequently, they got an im-
plicit agreement to use the data; this is a good example of forgiveness, not permission,
in terms of building services.) By creating geo-URLs (URLs that link an event or object
to a place for crimes), Stamen, a San Francisco-based design agency (http://stamen
.com), made the reported crime data more socially usable. URLs are of the form http://
oakland.crimespotting.org/crime/2009-02-18/Type/id. The URL breaks down into a la-
bel for crime, then a date, then a type (such as an assault), and then an ID for the offense.

Many of these identifiers are internally generated by each company, due to a lack of
commonly agreed upon external identifiers or multiple providers of identity. There are
some commonly agreed upon standards for books (e.g., ISBNs) and airport codes, but
most things do not have a tidy preexisting list of identifiers.

Issuing Identifiers
The world would be an easier place to navigate if everything came with an RFID tag (a
common type of radio frequency tag often used in shops) or a bar code. Unfortunately,
often by the time something is popular, the possibility of a simple worldwide identifier
is no longer feasible. Even with books, there are often multiple ISBNs for the same one
(the ISBN represents the edition, not the actual work), but services have been created
to give items unique identifiers. For example, the motive behind CDDB, a music lookup
service now known as Gracenote, was to calculate a unique code for every music CD,
creating a single identifier instead of the thousands of CD stock codes generated by
hundreds of recording labels. Another example is Equity, the UK union for people
working in entertainment. Their membership policy enforces a unique professional
name,* one of the few places where people have unique identifiers out of choice.

If you can find something that already exists on which to base your identifier, use that.
Many travel sites use the International Air Transport Association (IATA) and Interna-
tional Civil Aviation Organization (ICAO) airport codes. Book sites commonly start
with the ISBN and manually handle the mapping of editions. Ensuring that your

* http://www.equity.org.uk/HowToJoin/ProfessionalName.aspx

184 | Chapter 11: Modeling Data and Relationships

http://oakland.crimespotting.org
http://oakland.crimespotting.org
http://stamen.com
http://stamen.com
http://oakland.crimespotting.org/crime/2009-02-18/Type/id
http://oakland.crimespotting.org/crime/2009-02-18/Type/id
http://www.equity.org.uk/HowToJoin/ProfessionalName.aspx

identifiers are simple and that your API and website call the same object by using
something such as “w38y2wy” may seem obvious, but it is necessary advice. The right
approach to issuing identifiers will probably evolve, rather than spring fully formed in
version 1 of your site.

Auto-generated database keys, which tend to be simple number sequences, are fine for
some things, but these are generally equivalent to your actual user count or post count,
and you might not want to divulge your counts to just anyone. Lastly, not every data-
base or language generates sequences in the same manner, so if you generate your own
number sequence, you will control this and not leave it to the whims of another system
designer when you or someone else ports your code. Like URLs, not every identifier
needs to be hand-crafted, but issues of security will encourage generated keys for many
areas. Privacy is a key driver of this need.

Identifying People
Representing people on your site is important. There are usually three notions of a
person in a system. The internal database representation is usually a numeric key and
is used internally. The other two are used by the person on your site: the private name
by which the user logs in (typically this is the email address the person signed up with),
and the public screen name by which other people know this person. Randy Farmer
provides a good overview of these concepts at http://thefarmers.org/Habitat/2008/10/
the_tripartite_identity_patter_1.html.

There is some variation; some sites let you use the public identifier as the login username
and some sites allow use of OpenID. Most sites put the public identifier (screen name
or username) in the URL for the person’s profile page, too. Table 11-1 shows what
some popular sites use to identify people.

Do not use a person’s email address as a public identifier, as it is too
easily harvested by spammers.

Table 11-1. Identifying people on sites

Site Private login key Public identifier Public ID in URL

Flickr Yahoo! username GavinBell Yes, though can be different from public ID

Twitter Username or email zzgavin Yes

Dopplr Email or OpenID zzgavin Yes

For more information on how to build admin systems and separate user and adminis-
tration identities, refer to Chapter 16.

Putting Objects on the Internet | 185

http://thefarmers.org/Habitat/2008/10/the_tripartite_identity_patter_1.html
http://thefarmers.org/Habitat/2008/10/the_tripartite_identity_patter_1.html

Using Data-Driven Site Design
While I was with the BBC, I worked on a project called Program Information Pages
(PIPs). The aim was to create web pages for every TV and radio program broadcast by
the company. The format /programme-name/yyyy/mm/dd seemed like an obvious
choice for the URL, but the problem is that programs repeat.† The key insight was to
model the episode, not the broadcast. Creating a single page for an episode means there
is a focal point for all conversation about that program.

Exploring the information we had available from internal database systems and the
current broadcast behavior became the basis for the URL design. Repeats were one of
the main issues. These may seem like a curious television problem, but many events
occur more than once. For example, Jane Austen’s Pride and Prejudice has been made
into several films, a few television series, and a radio play, so a simple pride-and-
prejudice/ URL would not work; the version would not be clear. A monthly meeting is
another good example.

To focus on data first might seem at odds with the approach on activity as the core that
I outlined in Chapter 7, but unless you can effectively give a handle to the objects in
your community, it will be difficult for people to interact around them. This is partic-
ularly true if the content (object) is preexisting, such as music, video, crimes, or books.
The next level of focus should be on behavior. What verbs characterize the interactions
that you want your community to engage in around this content? Page layout comes
after you have determined the what and how of your site. High-level sketching on a
whiteboard can be a very effective way for a small team to understand the objects and
actions. But be cautious about jumping to detailed wireframes before you understand
the data. Those initial sketches should not be transformed into elaborate wireframes;
try several different approaches to the problem, then review. Iteration at this sketching
stage is cheap and easy, so take time to explore your ideas.

Handling Containment
The problem of containment can creep up on you. We encountered it at the BBC.
Sometimes an entire program is broadcast within another program. Saturday morning
cartoons are a good example of this. Another example is a side trip. If I fly to San
Francisco and stay a night, then I go to Sebastopol and stay there for a few nights, and
then return for another night to San Francisco, the trip to Sebastopol is inside a primary
trip to San Francisco. The early trip modeling for Dopplr thought of all trips as return
trips from home. So, this became a “London to San Francisco and back to London,”
then “London to Sebastopol,” and finally another “London to San Francisco” trip.
Including the notion of a side trip solved this problem. The default remains an “out

† Tom Coates wrote an excellent review of the work we did together to answer the question about programs
that repeat and their URL structures. You can find it at http://www.plasticbag.org/archives/2004/06/developing
_a_url_structure_for_broadcast_radio_sites/.

186 | Chapter 11: Modeling Data and Relationships

http://www.plasticbag.org/archives/2004/06/developing_a_url_structure_for_broadcast_radio_sites/
http://www.plasticbag.org/archives/2004/06/developing_a_url_structure_for_broadcast_radio_sites/

and back” from your home city, but now the web interface supports multiple legs on
a trip; see Figure 11-2.

Figure 11-2. Dopplr supporting trips inside other trips

They are not always obvious, but anywhere time-based activity occurs, there are likely
to be containment issues. Podcasts have segments and a DVD video has chapter points.
Travel with side trips and also most games (e.g., a match in a set for tennis) have these
kinds of containment issues, too. If they exist in your domain, you can decide whether

Putting Objects on the Internet | 187

they are important enough to represent. Time management can be tricky in other ways,
as the next section shows.

Changing Identities and Linking Content
Imagine a situation in which a helpful community member becomes a support staff
member (this is a common occurrence, in fact). When the person becomes a staff
member, all of her previous contributions to the community should remain as they
were posted; the staffing change should not affect the previous content. One useful bit
of advice for marking the ownership of content is to always ensure that it has a
timestamp.

It is worth examining where and when you need to make it known that someone is
acting as a staff member. If you have a founding team of three or four people and an
early community of a few hundred, your staff contributions will stand out from every-
one else’s, particularly if they are commenting on someone’s content. Consider that
when staff members comment on content, they are acting as themselves, not as a com-
pany representative. Restrict the urge to mark “STAFF” on everything that comes from
staff members. Reserve that “stamp” for places where they are acting in an official
capacity; it will have more impact.

A different example of identity and content comes from the Theyworkforyou.com site,
which creates a much improved version of Hansard, the UK government’s record of
Parliament. Each Member of Parliament (MP) is represented on the site and linked to
what he has said. However, MPs do resign or lose elections; for example, my local MP
will stand down at the next election and there will be a new MP. Ensuring that the
content from the current MP is not assigned to the new representative is important.

Lastly, there is the tricky area of personal identifier reuse, and many different options
for how to handle this. The simplest option is to assign identities once, even if the
account lies dormant. However, this generates bad feelings from later arrivals to your
site, as the “good” names get used up by the early adopters who may stop using the
site, but still have the identifier.

Many sites allow a grace period of six months of inactivity before an account name can
be claimed. An email to the current owner confirming that she will lose the account
due to inactivity is polite. Automatically reaping dormant accounts irritates people; a
grace period offers some balance between the two extremes. A point worth making is
that if your company creates and issues the screen names members use, you should
reserve the right to terminate service and prohibit sale of these identities. This will
discourage squatters and fake accounts.

Identity and Context-Dependent Views
Profile pages are a good example to show some of the issues that come up when mod-
eling the activities around a page. Imagine a social web application. Every person gets

188 | Chapter 11: Modeling Data and Relationships

http://theyworkforyou.com

his own page. How many different instances of that profile page with the same URL
will you need to create? Let’s take a look.

My view of my profile page includes private information, such as a count of visitors
and a link to edit the page, and uses the URL format /people/screenname. Figure 11-3
shows such a profile page.

Figure 11-3. Profile page from Upcoming, showing the private links for account deletion and profile
editing

Your view of my profile page will have a different behavior if you are already connected
to my profile on this site. If not, there will be an “Add As Contact” link (the exact
wording varies). Both views will have the same /people/screenname URL as the profile
page.

The logged-out or search engine view of a profile page has the same URL as well.
However, the viewing person or search bot is not a member of the site, so no special
activity is possible, unless the site is semiprivate. LinkedIn offers a different page to
non-logged-in members, as does Dopplr (see Figure 11-4), but still using the
same /people/screenname URL.

Editing profile pages requires a different URL, and it doesn’t need to be a clean URL.
You can do this via Ajax and in-place editing, but moving to a different page will give
the user a place to update all of her details at once, rather than section by section.

Feeds and syndication give alternative representations of the same content and different
URLs. A feed version can actually mean an Atom and an RSS version of the page.
Usually, this is a stream of updates to the page content. In terms of modeling, this brings

Putting Objects on the Internet | 189

a time perspective into the representation (see “Considering Time Implica-
tions” on page 206 for more information). Syndicating content on one web page to
place it on another page on the Internet is a common technique. This will give the page
a different URL, that of the hosting page, but it is still another representation of the
same content from the social application (see Figure 11-5).

Aggregation takes updates to the page content and merges them with other updates to
the site. The video example in Figure 11-6 covers this with more appropriate content.
Profile pages tend to have slower updates and there is less scope for aggregation.

The mobile version of the profile page can use the same URL, but the page content will
be laid out differently on some devices. Deliberately designing for mobile devices might
seem less of an issue now that phones such as the iPhone and the Google Android are
available, but it is worth examining what information you think will be important in a
mobile context. Typically, less information is displayed. Some sites are now producing

Figure 11-4. Dopplr public profile page

190 | Chapter 11: Modeling Data and Relationships

a specific mobile version of their sites. For instance, m.flickr.com, shown in Fig-
ure 11-7, is a great example of what can be done. It shows the version of Flickr as seen
on the iPhone. It is a complete reworking of the interface for the site, as suited to a
mobile context.

So, after all this discussion on versions of profile pages, it turns out that there are eight
versions of this page. However, four of them use the same URL with different behavior
that is based on who is viewing the page. The editing version plus the reuse versions in
feeds, syndication, and aggregation will have different URLs.

Finally, some of the content on a profile page might be represented as an hCard micro
format. An hCard holds business-card-like details about a person. These
microformats allow for simple content reuse. They are a simple HTML markup pattern

Figure 11-5. Syndicated content from Flickr to another website, clearly showing the source and
ownership of the images

Figure 11-6. Video clip of my son on Vimeo

Putting Objects on the Internet | 191

http://m.flickr.com
http://microformats.org/wiki/hcard
http://microformats.org/wiki/hcard

that makes publicly visible content machine-readable. Formatting your content as
microformats creates a read-only API on top of your normal page content, for relatively
little additional effort (see http://allinthehead.com/retro/301/can-your-website-be-your
-api). In the case of a profile page, supporting hCards allows anyone viewing the page
to more easily add the person whose profile it is to an address book.

Figure 11-7. m.flickr.com

Exploring a Video Example
A piece of content might be reused and may appear in different contexts. A video is a
reasonable example to consider, so let’s look at some ways to link to, include, or ref-
erence video on a site.

The video itself is accessible through a URL pointing at the file, but the video lacks
context on this URL. The URL points at the server farm for media, not the page rep-
resenting the picture.

The default home for this video is a part of a person’s account on the service; in this
case, Vimeo. All the metadata about the video is available from this page, which will

192 | Chapter 11: Modeling Data and Relationships

http://allinthehead.com/retro/301/can-your-website-be-your-api
http://allinthehead.com/retro/301/can-your-website-be-your-api

have a unique URL known as a permalink. The URL should show the connection be-
tween the person and the video using a format of eg/videos/person/video_ID. Fig-
ure 11-7 shows such a video clip.

When a video appears on a tag page, it is the tag that is being represented and the video
that is being included. The /videos/tags/tag_word URL structure by nature does not
allow for specific videos to be referenced. Nor is this desirable: a video should have a
single URL that points at the original object. Every other instance of the object is by
reference to this page.

Many sites have a Featured section. Persistence is hard to maintain in these kinds of
URLs. Using /featured and pagination is a common practice. Adding an additional date-
based URL structure alongside the default allows exploration of the featured content
by time. For instance, /featured/yyyy/mm/dd is a reasonable approach.

Videos can be represented within a group page. Usually they will appear on a group
page when a user manually adds them, as a paginated listing, as in /group/groupname/
videos/, with subsequent pagination. Note that there will never be a /group/groupname/
videos/video_id URL, as the video belongs to an individual, not the group.

Videos can appear in site search results on the basis of any of the video’s metadata. For
instance, a video can appear in web search results on the basis of the text associated
with the page on which the video is displayed. This matching is based on a more limited
set of metadata than the site search offers, but it is useful for bringing additional traffic
to your site.

Also, the owner of a video can incorporate the video onto another site, either as a Recent
Updates badge or by some form of HTML or JavaScript. In some cases, it may be the
plain URL that points at the media file. Alternatively, another person may want to
include the video on his site. Often, this is via an HTML and JavaScript code fragment
that allows for easy placement on another site.

Incorporation into someone else’s site or application via an API is another possibility,
but this can lead to complex issues. Ensuring that your API follows the same permis-
sions and rights management that you expect of people using your site is a good idea.
Content included by an API call is likely to be arbitrarily based on some search terms.
For instance, all pictures of cats should return only images that allow reuse if the call
is not originated on your site. Educating your users about the API and what it might
mean for content is also important. Allowing the people using your site to set Creative
Commons licensing for their content so that media-sharing permissions are clearer is
highly recommended. This makes the available options much clearer, from All Rights
Reserved to public domain and Creative Commons options (for more information, see
http://creativecommons.org/).

Searches based on location proximity are quite common now for images and increas-
ingly so for video. GPS-derived latitude and longitude values are often embedded in

Putting Objects on the Internet | 193

http://creativecommons.org/

metadata content coming from phones and cameras. Location metadata deserves a
section of its own, so see “Entering the Geoworld” on page 201 for more details.

Lastly, content can appear in response to command-line or IM application commands.
This is largely experimental at the moment, but there is a large scope for command-
based requests for information. Video is not a good use case for command-based re-
quests, but text-based content is very suitable. While it is possible to return metadata
about photos and videos in a text-based interface, we often need to see the actual images
to determine whether they are the right ones.

Twitter had an experimental AOL Instant Messenger (AIM) and Google Talk–based
interface for its application, which is offline as of this writing. It was a great way of
interacting with the site when it was running. Command-line interfaces can run over
SMS, email, and IM. Figure 11-8 shows the initiation step for a text interface. Ping.fm
generated a unique code for me to send from my AIM account so that it could associate
the AIM account with my Ping.fm account. For the right kind of content, it provides a
very immediate and responsive interface to your application. Aardvark is a new entrant
into this area, using IM and email as a means of asking questions of your social network.
The interaction style feels very natural and conversational. The questions are then sent
to people who Aardvark thinks might be able to answer them based on analysis of the
words in the questions and tags that people on the service have applied.

Figure 11-8. Setting up Ping.fm to allow posting from AOL Instant Messaging

Content can appear in a wide variety of contexts, but the overriding need is to ensure
that raw files are not separated from their context and metadata. You want people to
come back to your site to find more excellent content. Another way to put this: the
content and the person should travel together. With social applications, everything is
owned by someone.

Thinking that you are making an application only for the Web is a mistake, despite the
title of this book. Your content will appear in many different contexts beyond the site
you create to host it. The API in particular can be responsible for a huge percentage of

194 | Chapter 11: Modeling Data and Relationships

http://vark.com

the accesses to your content. Flickr is the largest user of its own API. A significant factor
in the growth of Twitter was the use of Twitter’s API by dozens of clients. Twitter would
be a different (smaller) product if all access had to be purely via the website.

Aggregating Data to Create New Content
Chapter 17 goes into more detail on API design, but while we are looking at data mod-
eling, one aspect to keep in mind is the benefits of having people make things with the
content on your site. Uncomplicated URLs and well-documented data structures sim-
plify integration with external tools. The graph shown in Figure 11-9 was easy for me
to produce from Last.fm. All I needed to supply was my username and a date range,
and then the LastGraph application produced a chart of the music I listened to while
writing the bulk of this book.

Figure 11-9. LastGraph image showing my listening habits, generated from data stored on Last.fm

This ease of embedding and integration means people are more likely to discover your
service and then make it part of their lives. I’ll pick up on this topic in Chapter 17, but
I wanted to raise it here so that you realize that the data modeling is not just for your

Aggregating Data to Create New Content | 195

http://lastgraph3.aeracode.org/

own site; you want to make it possible for people to integrate their data on your site
with data from other sites to make clever, interesting things.

Exploring Groups
Now that we have looked at the individual and the object, let’s look at modeling a larger
social entity, the group, discussed earlier in Chapter 9. What is a group? A simple
definition is that a group is a collection of individuals on a site who share a common
interest.

Personal groups, similar to email or buddy lists in IM clients, are much less common
than public groups. Essentially, these are subgroups of a person’s contacts from his
social network. The user may select the people in his subgroup, or it could be compiled
from metadata—for example, all contacts in London. These kinds of groups offer a
good mechanism for managing volume on social networks, but more work remains
before these kinds of groups will be widespread. They are inherently private objects
and so their URLs will flow from how you show contact listings: for instance, /profile/
zzgavin/contacts/londonfriends or /profile/zzgavin/contacts/foodies/. Deciding to make
these groupings public should be handled on a case-by-case basis.

The collective view of a group is pretty much everywhere on the Internet. A single
individual creates a group, and the group is usually publicly available for anyone to
join. Group names must be unique; for example, only one group can be called Aus-
tin, but there could be another group called SXSW-Austin. In terms of modeling, an
obvious approach is to associate the user_id with a group object. Essentially the group
becomes a container for the people and conversations associated with it.

There are many ways in which people can join groups and determine who can see its
content. Table 11-2 shows some of the possible combinations.

Table 11-2. Group types for social applications

 Permission to
join?

Public content? Participation for non-members? Public existence?

Private Yes No No No

Semiprivate Yes No No Yes

Public (by invitation) Yes Yes No Yes

Public No Yes Yes Yes

A final group type is the affiliation type. An example is everyone who currently works
for Google on a career-oriented site such as LinkedIn. In this case, the origination of
the group comes from automatic processes at LinkedIn, not from an individual creating
the group. Membership is based on metadata from the profile of the people who use
the site.

196 | Chapter 11: Modeling Data and Relationships

With Nature Network, we had two different entities that performed the function of a
group: a people-led construct called a group, which was primarily for people to show
non-employer affiliations, and the more common group with a discussion board, called
a forum. We were trying to shortcut affiliations, as this is what groups on Nature Net-
work were, in effect, but the structure was not satisfactory. In hindsight, it would have
been better to let a critical mass of people arrive before attempting to create organiza-
tional or affiliation-based networks. This also shows the importance of language. We
were trying to express the concept of a formally organized group of people, such as a
company, professional association, or university department, and chose the more gen-
eral term group so as not to dissuade a company or association from joining.

There remains a difference between wanting to be an active member of a community
and simply belonging to a group. One of the issues we were trying to resolve was slow
versus fast community interaction. The affiliation type of community is generally slower
in activity rate than the chattier forum type. An example activity for an affiliation would
be publications from the group, which would come from members in the group pub-
lishing newspapers, which is a slow activity. A subject-based forum might encourage
group members to recommend publications, which is a quicker-paced activity.

Handling Groups and Privacy
Adding groups to your site will complicate every aggregation page on it. Tag pages for
a person or sitewide need to be filtered for private group content. Every group page
needs to filter for access before showing the content. Despite all of these complications
and a dramatic increase in testing requirements, groups are a valuable addition to your
site. However, bear in mind the extra code complexity and pages you will be creating
by implementing groups.

A group starts with an invitation, which is a complex object. An invitation from one
member to another is a relatively straightforward situation. Sending an invite involves
the requesting member picking a person from her contacts list and sending him a (po-
tentially personal) invite. To join, the invitee must check his email, click the invitation
link, and accept. The invitation link must be keyed to the invited member; it is directed
at him, not toward anyone who finds the link or guesses an invite URL. Using a non-
sequenced number for the invites helps keep them secure. This process implies a check
that the person is logged in. If you are already checking that the invite is addressed to
the person, adding private groups involves no additional work, as the invite is correctly
being opened by the right person.

If you allow arbitrary invites to be sent to email addresses rather than existing contacts,
the flow becomes more complex. In this case, you need to place the invite on hold until
the person has completed the sign-up process, and then the invite can be processed. A
final complication is if the invite has been sent to someone who is already a member;
he is likely to be logged in and an invite should begin the process to create a new
account. It should also offer him a chance to add this new email address to his existing

Exploring Groups | 197

account. Catching this situation would involve noting that the person was already
logged in, but was trying to process an invite for another email address. An option to
verify the invited email address would work. Then, after verification, he could auto-
matically be taken through the invite process. Allowing multiple email addresses to be
associated with a single identity is important, because it allows people to be properly
represented on your site.

Adding privacy to your site creates complexity. Every page needs to check who is view-
ing the page and act appropriately. Privacy has additional issues for scaling, plus your
API will now require authentication to access the private content on the site, as well as
a range of new methods to deal with checking for privacy. The Guest Pass functionality
on Flickr resolves privacy for people who are non-members (see http://www.flickr.com/
help/guestpass). It is a special key that unlocks a specific set of photos on an individual’s
account. For example, a Guest Pass can be sent to grandparents so that they can see
pictures of their new grandchild.

Handling Privacy and Scaling Issues
Early in Twitter’s history , it offered an interesting feature called “with_others,” which
allowed people to see the posts from people that someone else followed. For instance,
you could drop in on their conversation and see the context of the @replies for those
people who you were not following. If everyone has a public account, this is a great
feature. Once people start to have private accounts, which they could on Twitter, scal-
ing becomes a serious issue. The impact for Twitter was that every tweet needed to be
checked against the person who was viewing, and at 20 tweets per page, that was 20
additional requests. The likelihood that two members will follow the same people is
near zero, so every “with_others” page view had to be requested from scratch. Sadly,
this feature is no longer part of Twitter. It was reasonable to remove it, however, given
the scaling problems that it was having.

This is not the only example of privacy causing scaling issues. Every site that has the
potential for private and non-private data to be mixed on the same page suffers from
this. This is particularly true with social applications, where the question of privacy
changes with every individual. When you add privacy to your application, examine the
areas of your site where you aggregate information and assess the impact.

Some readers might expect the bulk of this chapter to be about SQL and data normal-
ization. This is an important area in designing efficient systems that will scale well, but
to get the most out of your system, database storage, indexing, and relationships must
be quite fluid. Technologies such as memcached make a huge difference in how your
system can be set up. Chapter 16 will look at some approaches that are appropriate for
social software applications. A clean, perfectly normalized database schema is unlikely
to occur with social software. Many polymorphic relationships are present, such as the
one between a tag, an object, and a person. Multiserver setups are very common, so
there is the complexity in maintaining coherency among the write servers, the read

198 | Chapter 11: Modeling Data and Relationships

http://www.flickr.com/help/guestpass
http://www.flickr.com/help/guestpass

servers, and their cache. Issues exist immediately post-write when the read servers and
their cache have become invalid. Add in network latency, potentially cross-continent
if you are big enough, and this is a real problem. Let’s focus on modeling the problem
you are building an application for and leave implementation until later.

Making the Most of Metadata
Metadata creates connections between content on your site; it is in your interest to
support it. For photography, there is the data held in EXIF (EXchangeable Image File)
format, which is embedded inside the data of each digital photo describing the param-
eters of the photo as taken in the camera. Similarly, for video there is clip length and
camera type. Books have publication information such as page count, edition, pub-
lisher, and ISBN.

If you treat metadata as a means of enabling organization for your site, it can give
additional structure for a little extra work. Every item of metadata you add to the site
is a possible link to something else on your site and additional discoverable information
for people searching the Web. Place, time, and intrinsic file format information are the
most obvious types of information to gather. In addition, there is a wealth of sensor
data to come from new devices connecting to the Internet, from Arduino and ZigBee
electronics to embedded GPS and even e-book readers. In time there will be a lot more
data to associate with individuals.

However, one of the best types of metadata comes from your users, who will add tags
to their content, and in some cases will tag other people’s content, too. These tags
provide a good means of organizing your site. Machine tags are a special type of
tag that uses a key/value paring such as name:gavin to make data values explicit. They
are useful for getting better value from simple tagging (for more information, see http:
//www.flickr.com/groups/api/discuss/72157594497877875/). Machine tags allow for a
key/value pair as a single tag; this means you can store lat:51.0234 as a single tag and
not have to guess which of the numeric values in the four tags “lat, long, 51.0234,
0.003” is the latitude and which is the longitude.

Some of the data you capture will be really messy. Place of work and address informa-
tion is notorious for being noisy data, as there is a lot of variance in how people relate
address information. Getting the place of work and street address for a university de-
partment from 10 people at the same department can result in 10 variations on the
address, depending on how complete or abbreviation-laden each one is.

Normalization is hard, because you will usually not have a fixed list of places to work
with. Auto-complete and auto-suggestion can be effective here. Depending on your
country, you might be able to get a postcode or zip code database. Then you can start
determining location based on postcode first. If that is not possible, a type and
suggest interface can work well, where the input from the user is automatically used as
search input while she types.

Making the Most of Metadata | 199

http://www.flickr.com/groups/api/discuss/72157594497877875/
http://www.flickr.com/groups/api/discuss/72157594497877875/

Connecting the Relationship to the Content
Due to the complexity that adding privacy introduces, there are other approaches to
the design of social web applications. You can make the default such that all content
is private. This might seem like an odd decision for a social application, but several
successful applications already do this: for instance, Wesabe in the financial sector,
Dopplr for trips, and Fire Eagle for location data.

With this default of everything being hidden comes a rejection of the levels of social
relationships in terms of contacts. With Dopplr, there is one level of relationship: either
you are sharing trips or you are not. Interestingly, with Dopplr, the direction is outward:
you choose to make your trips available to a person; there is no reciprocation by default.
It can be summed up as “I want you to know where I am, not express a level of friendship
rating between us.” This push model is the inverse of the standard “watcher” model
that is common in many other social software applications. In this case, privacy is
handled outside the application. If you do not want people to know you are taking a
quick trip to Paris, don’t enter the trip. There is no subdivision in the application. Not
every content area can follow this model; it works well for content where there are a
small number of significant events (e.g., on Dopplr). For a higher-volume social object
such as photography, the push model would be akin to spamming.

Modeling Relationships
A common practice is to import contacts from a variety of sources to seed a new mem-
bership on a new application. Importing from the webmail services of Yahoo!, Google,
and Microsoft is very popular. Alongside simple importing of an address book file is
vCard data. A vCard is very similar to the previously mentioned hCard microformat;
email programs can export vCards. Subscribing to another social network is also pos-
sible. Within Dopplr, it is possible to subscribe to another social network for weekly
updates. These are useful services, as they avoid the pain of identifying the same friend-
ships again and again.

The focus of each social application differs: a social application for wine tasting will
have a different audience from one for photography. You might not want a bulk import
of contacts, but want to merely offer the ability to add or invite these people to your
new service. A related point is that few services support the idea of gradually losing
touch with someone. A fair portrayal of normal social existence is that we make friends
and over time we make new friends and lose contact with former friends.

You might have added someone on Flickr two to three years ago, but if you have not
looked at her photos or interacted with her for some time, should Flickr suggest you
are no longer really friends? Flickr could do this subtly, by not showing her updates as
often, but this feels disingenuous to your relationship. Tools to reduce connections
become more important as the audience on your site grows. Pruning one’s social net-
work is becoming a popular phrase in some circles, but there is very little software

200 | Chapter 11: Modeling Data and Relationships

support for this kind of activity. It is possible to “unfollow” people one by one on many
services, but there are few bulk pruning tools.

Underlying these social relationships is the idea that a single social network is evolving:
the Internet. Each of these social networks connects people who already inhabit this
world. Many people have a single profile URL, which they give to new applications. I
usually use the same profile URL, gavinbell.com; other people might use their blog URL
or one from another social network service. Commonly, these sites allow for listing of
other services, so I can list Flickr, Dopplr, Upcoming, and Twitter. Each of these will
have a link to my profile on those sites. If the XFN (XHTML Friends Network) micro-
format rel="me" attribute is placed in the HTML for these links, this explicitly says that
you are the same person at each end.

On gavinbell.com, I have the following line of code:

flickr

The corresponding Flickr profile page has the following code, which I’ve simplified
slightly:

gavinbell.com

Both sites point at one another and both have rel="me" on the links. They form part of
a composite me on the Internet. We need better tools to manage these longer-term
relationships, particularly as the time during which we have these kinds of relationships
grows into years and we move around the world. The Google Social Graph API is one
tool that lets you explore the growing concepts of distributed identity, in particular the
use of XFN microformatted links.

Entering the Geoworld
In 2008, location started to become a significant aspect of social networks. There are
now commonly available data sets that connect coordinates to place names and
postcodes (e.g., http://geonames.org) and offer an excellent resource as a free starting
point. Geonames.org is a community-generated database of location data and place
names. Determining location is now relatively easy in areas of the world where there
are Wi-Fi and 3G phone networks.

Skyhook Wireless offers a product called Loki that connects your web browser to its
data set offering location. This is the same data set behind the location services for the
iPhone. Yahoo! has its WOE data set (http://developer.yahoo.com/geo/) upon which two
interesting products are based: Fire Eagle and the Places section of Flickr. The World
Wide Web Consortium (W3C) is running a new working group to define a secure and
privacy-sensitive interface for using client-side location information in location-aware
web applications. The current draft is available from http://www.w3.org/TR/geolocation
-API/, and the main working group page is available at http://www.w3.org/2008/geolo
cation/. Finally, there is an increasing availability of GPS services in everything from
phones to cameras.

Connecting the Relationship to the Content | 201

http://gavinbell.com
http://gavinbell.com
http://code.google.com/apis/socialgraph/
http://geonames.org
http://geonames.org
http://skyhookwireless.com
http://developer.yahoo.com/geo/
http://www.w3.org/TR/geolocation-API/
http://www.w3.org/TR/geolocation-API/
http://www.w3.org/2008/geolocation/
http://www.w3.org/2008/geolocation/

One of the core services these companies offer is the mapping between the three types
of location identifiers. A coordinate system such as latitude and longitude or the GPS
WGS84 divides the world into a common grid reference. People generally know a
place’s name, but few can readily give you its grid reference. Unfortunately, the name
of a place has a lot of ambiguity in terms of where the area begins and ends. A gazet-
teer, which is a word list of place names that map to locations, can help determine the
exact location of a place.

The third type of location identifier is postcodes (or zip codes), which refer to a precise
area of land and, if complete, can be quite accurate. Linking postcodes to one another
is a complex process and both the place names and postcodes change over time.
Postcodes generally exist to support mail delivery, so if the volume of mail to a certain
area increases, the number of postcodes will increase, too. This is the model for the
United Kingdom; other countries vary.

Modeling where someone is located generally comprises two values: where they declare
as home and where they are now or when the activity associated with the object took
place. Frequently, with media such as photographs or video, the person is no longer at
that location, but the metadata describes when and where he was when it was captured.
Using the Geonames.org library, it is possible to get someone to enter a place name
and then produce a list of places for him to choose from. Nature Network uses this
approach, as do many other location-based applications. This will give you a home
location, which for many simple applications, is enough to allow proximity-based
matching.

More complex applications where you care about the movement of the person require
a near-real-time location-tracking system, or one that can dynamically report location
quickly. In this case, I suggest that rather than trying to create these types of systems
from scratch, you should look at Fire Eagle (discussed in the next section), which offers
a person-based location management application with excellent privacy controls. The
iPhone, Android phone, Nokia phones, and others offer real-time location tracking and
proximity matching for mobile use.

202 | Chapter 11: Modeling Data and Relationships

http://geonames.org

Once you have obtained a location, you will at some point want to publish the data
and give it a sensible URL. This is a tricky endeavor. A URL such as /country/county or
state/town seems entirely reasonable, but when you try to project a country’s structure
into the application, it becomes immensely complex. Making location URLs consistent,
hackable, and meaningful is tricky.‡ Capital cities are often exceptions to the state or
county requirement. In the United Kingdom, for instance, there is a “Greater London”
construct that deals with the complexity of county and metropolitan area boundaries.

Organizing content by place is an excellent idea, but it is also quite difficult. Simply
put, determining whether two things are near each other is pretty straightforward, and
determining whether something is within 20 miles of a place is slightly harder. How-
ever, determining whether a place is in Texas is really hard. Texas is not a simple shape,
and determining whether a place is located there on the basis of the actual state boun-
dary means you need a special type of database that can handle shape files. Flickr
released the shape file data set under a public domain license (see http://code.flickr.com/
blog/2009/05/21/flickr-shapefiles-public-dataset-10/).

Simple approaches to geolocation, such as point and radius, will, however, get you a
long way with less effort than using shape files. This approach is good for quick ex-
periments. These are based on latitude and longitude and a fixed distance from a point,
giving you 5, 10, or 20 miles from the point defined. If you are dealing with postcodes,
you will get the center, known as the centroid, of the area the postcode covers.

Flickr generates pretty accurate shape files from the geotagged photos it has had up-
loaded (http://code.flickr.com/blog/2008/10/30/the-shape-of-alpha/). Lots of other com-
panies have done great work in the geocoding area, but Flickr has been making it into
a good story, and that is why I used them in Figure 11-10. Using photos does lead to
interesting artifacts. Note that the shape file boundary expands out into the bay in front
of Houston, but on Flickr, it is still seen as being Texas from the point of view of the
photographers.

‡ This pair of blog posts describes the URL design approach for Flickr Places: http://laughingmeme.org/2007/
12/10/flickr-a-place-of-our-own/ and http://geobloggers.com/2007/11/28/the-overdue-flickr-places-blog-post
-part-i-urls/. They give a great overview of the thinking behind linking people, places, and social objects.

Connecting the Relationship to the Content | 203

http://code.flickr.com/blog/2009/05/21/flickr-shapefiles-public-dataset-10/
http://code.flickr.com/blog/2009/05/21/flickr-shapefiles-public-dataset-10/
http://code.flickr.com/blog/2008/10/30/the-shape-of-alpha/
http://laughingmeme.org/2007/12/10/flickr-a-place-of-our-own/
http://laughingmeme.org/2007/12/10/flickr-a-place-of-our-own/
http://geobloggers.com/2007/11/28/the-overdue-flickr-places-blog-post-part-i-urls/
http://geobloggers.com/2007/11/28/the-overdue-flickr-places-blog-post-part-i-urls/

Figure 11-10. The shape file for Texas, as defined by photos contributed to Flickr (http://flickr.com/
photos/straup/2971287541/; used with permission)

One caution about geodata is in order: posting a picture of something and associating
its location with it makes it easier to find that object in the real world. Earlier in this
chapter, I didn’t provide the URL for the Pachube images in Figure 11-1, because if you
know which URL on Pachube is mine, you can note when we are not using power and
therefore are likely to be away from home. I’m not expecting any reader of this book
to come to my house and rob me; the point is that geodata connects the real and virtual
worlds very concretely. Make sure the geodata you include in your applications explains
this connection and has adequate privacy protections around it. The default setting in
the Dopplr badge is to show the month of travel only, not the dates, so that unfamiliar
visitors to your blog don’t know exactly when you will be away, as Figure 11-11 shows.
It is possible to show these as exact dates, too, as Figure 11-12 shows.

Figure 11-11. Dopplr badge without dates

204 | Chapter 11: Modeling Data and Relationships

http://flickr.com/photos/straup/2971287541/
http://flickr.com/photos/straup/2971287541/

Figure 11-12. Dopplr badge with dates

Changing location can still be a hard problem to solve. The notion of home and where
you are now is challenging enough to implement. Allowing people to change their home
location is essential, but effects of this can be complex. If you are delivering location-
based content, do you reset all the previous location information, essentially starting
afresh with the new location? The people from the old location will still be friends, but
their most local content may no longer be of interest. Assuming that location will
change is a good way to plan your product.

Becoming “Brokers of the World”
Fire Eagle, a service from Yahoo!, is what is known as a location broker. Fire Eagle
knows where its members are in the world at any point. You can tell other applications
to ask Fire Eagle where you are and allow these applications to update Fire Eagle.
Importantly, Fire Eagle handles the privacy around this information for you. You tell
Fire Eagle what each application is allowed to do and to what degree to share infor-
mation, from the exact location to country level. For more information about Fire Eagle,
see the interview with Tom Coates, the product manager for Fire Eagle, at http://www
.ygeoblog.com/blog/2009/02/06/irregular-interviews-1-tom-coates-yahoo-geo-technolo
gies-and-fire-eagle/, where he discusses the creation of the service and some future ideas.

An important distinction with Fire Eagle is how it handles application-level permissions
versus user-level permissions within each application. Fire Eagle handles only high-
level application permissions. For example, a Facebook application has access to my
data. It is then up to the social network to handle who can see this data. This clean
separation between data access and data viewability means Fire Eagle never needs to
know who your friends are, just where you would like to share your information.

Essentially, Fire Eagle offers a complete location management service. However, you
can imagine a similar service for social network invite delegation that accepts invites
from previously accepted people. Other examples of brokers exist as well. For instance,
Last.fm is almost a music broker tool; it knows lots of detail about its users’ tastes, and
uses those details to pick music for them. A broker for money management is also
possible. In addition, Twitter is becoming an availability or communication broker.
Broker services are about automating and managing data on your behalf; they will
become increasingly common as more of the material world comes online (see“Infor-
mation Brokers” on page 253).

Connecting the Relationship to the Content | 205

http://www.ygeoblog.com/blog/2009/02/06/irregular-interviews-1-tom-coates-yahoo-geo-technologies-and-fire-eagle/
http://www.ygeoblog.com/blog/2009/02/06/irregular-interviews-1-tom-coates-yahoo-geo-technologies-and-fire-eagle/
http://www.ygeoblog.com/blog/2009/02/06/irregular-interviews-1-tom-coates-yahoo-geo-technologies-and-fire-eagle/

Considering Time Implications
Not considering when something was published can have a significant impact on your
site. If you doubt this, the story from Wired at http://blog.wired.com/27bstroke6/2008/
09/six-year-old-st.html and The Times (UK) at http://technology.timesonline.co.uk/tol/
news/tech_and_web/article4742147.ece might convince you. It is about a huge United
Airlines stock tumble. A Florida newspaper had an automated popular story section
that placed a 2002 story about United’s bankruptcy proceedings from that year on the
home page. This was then picked up by Google’s daily visit to the South Florida Sun
Sentinel’s news home page. The story was undated; Google’s news engine apparently
automatically assumed a 2008 date. An analyst then picked up the story from Google
News and pushed it to Bloomberg, and within minutes the United Airlines stock was
tumbling. Its stock price dropped from $12 to $3, then recovered to $11 over the course
of the day. See http://24ways.org/2008/ghosts-on-the-internet for more.

Errors like this do happen from time to time. The issue, however, is not one of accuracy.
We can get very accurate timing, down to milliseconds. Ruby and other languages can
even handle calendar reformation in England from the 1500s (see http://www.ruby-doc
.org/core/classes/DateTime.html). Time is defined by http://www.w3.org/TR/NOTE-da
tetime, which extends the ISO 8601 definition by mandating the use of a year value.
Associating the right date with the right piece of content and action remains the issue.

But what happens when you have more than one possible date? Looking at Flickr, the
picture at http://www.flickr.com/photos/douglascountyhistory/2714248706/in/date
taken/ has four date values that can be associated with it. The picture was taken around
1900, scanned in 1992, placed on Flickr on July 29, 2008, and replaced later that day.
Which dates should be represented here? This is a difficult question to answer, but
currently the date of upload to Flickr is the best date represented in terms of the date
URL format, /photos/douglascountyhistory/archives/date-posted/2008/07/29/, plus
some Dublin Core§ RDF (Resource Description Framework). Flickr uses 2008 as the
value for this image. It’s not accurate, but it’s a reasonable compromise for the millions
of other images on its site.

In terms of newspapers, the BBC uses the following tag:

<meta name="OriginalPublicationDate" content="2008/12/18 18:52:05" />

along with somewhat unclear URL formats such as http://news.bbc.co.uk/1/hi/technol
ogy/7787335.stm. The Guardian uses nice, clear URLs such as http://www.guardian.co
.uk/business/2008/dec/18/car-industry-recession, but it has no marked-up date on the
page. The New York Times is similar to the Guardian with nice URLs such as http://
www.nytimes.com/2008/12/19/business/19markets.html, but again no timestamps. All
of these papers have all the data available, but it is not displayed in a useful manner.

§ Dublin Core is a standardized minimal set of metadata used to describe arbitrary resources (see http://
dublincore.org/documents/dces/).

206 | Chapter 11: Modeling Data and Relationships

http://blog.wired.com/27bstroke6/2008/09/six-year-old-st.html
http://blog.wired.com/27bstroke6/2008/09/six-year-old-st.html
http://technology.timesonline.co.uk/tol/news/tech_and_web/article4742147.ece
http://technology.timesonline.co.uk/tol/news/tech_and_web/article4742147.ece
http://24ways.org/2008/ghosts-on-the-internet
http://www.ruby-doc.org/core/classes/DateTime.html
http://www.ruby-doc.org/core/classes/DateTime.html
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.flickr.com/photos/douglascountyhistory/2714248706/in/datetaken/
http://www.flickr.com/photos/douglascountyhistory/2714248706/in/datetaken/
http://news.bbc.co.uk/1/hi/technology/7787335.stm
http://news.bbc.co.uk/1/hi/technology/7787335.stm
http://www.guardian.co.uk/business/2008/dec/18/car-industry-recession
http://www.guardian.co.uk/business/2008/dec/18/car-industry-recession
http://www.nytimes.com/2008/12/19/business/19markets.html
http://www.nytimes.com/2008/12/19/business/19markets.html
http://dublincore.org/documents/dces/
http://dublincore.org/documents/dces/

Syndication formats are better at supporting dates. For example, RSS cyber.law.har
vard.edu/rss uses RFC 822 tools.ietf.org/html/rfc822 for dates just like email, so dates
such as Wed, 17 Dec 2008 12:52:40 GMT are valid, with all the whitespace issues that
entails. The Atom syndication format uses the much clearer tools.ietf.org/html/
rfc3339 with timestamps of the form 1996-12-19T16:39:57-08:00. Both syndication
formats encourage the use of last-modified timestamps. This is understandable, but it’s
a pity because the published date is a very useful value. The Atom syndication format
supports “published” and mandates “updated” as timestamps; see the spec for Atom
at http://tools.ietf.org/html/rfc4287 for more detail.

The hAtom microformat is a good catchall for much of this kind of work. The embed-
ded nature of the microformat means the date will always be directly associated with
the specific piece of content (see http://microformats.org/wiki/hatom-examples). A mi-
croformat works by nesting semantic information around the actual content to be dis-
played. The timestamp is included in the metadata for the link. For example:

<a href="http://www.ablog.org/2009/posttitle" rel=
 "bookmark" title="posttitle">
<abbr class="published" title=
 "2008-07-10T14:07:00-07:00">July 10th, 2008</abbr>

Making it easier for people searching for your content in the future should be a priority.
We’ve discussed tagging content and geotagging content. Now it is time to get the
timestamps right on our content. “How do you know when something happened?”
and “how can you find other things that happened at the same time?” are fair questions.
A range of tools are available in either hAtom or RDF to specify time accurately along-
side content, and they are not hard to implement, particularly as Google now supports
microformats and RDFa (http://www.w3.org/TR/rdfa-syntax/) from its search product.

Another way to handle date-based information is by generating and processing iCa-
lendar or.ics files (see http://tools.ietf.org/html/rfc2445). These files are handled well by
Apple’s iCal, Mozilla’s Thunderbird, and Microsoft’s Outlook 2007 and onward. They
allow event information to be efficiently represented in a calendar instead of as simple
plain text. Some applications like elmcity.info, a generic local events application created
by John Udell, use these calendars as the primary means of information exchange.
Others like Dopplr and Upcoming primarily use them as a means of information out-
put, though Dopplr will subscribe to an iCalendar file as a source.

Looking Beyond the Web
From the iPhone to Bluetooth and sensors making non-desktop information, the Web
is changing. An undercurrent in this chapter has been the focus on data modeling over
page presentation. Get the data modeling right and you can build the service to support
any platform. When Twitter and Flickr were being designed, the iPhone didn’t exist,
yet via specific HTML templates and applications using their APIs, both services thrive

Looking Beyond the Web | 207

http://cyber.law.harvard.edu/rss
http://cyber.law.harvard.edu/rss
http://tools.ietf.org/html/rfc822
http://tools.ietf.org/html/rfc3339
http://tools.ietf.org/html/rfc3339
http://tools.ietf.org/html/rfc4287
http://microformats.org/wiki/hatom-examples
http://www.w3.org/TR/rdfa-syntax/
http://tools.ietf.org/html/rfc2445

on mobile platforms. Non-desktop platforms will offer new kinds of behaviors or af-
fordances, which will allow your application to do new things with them, but the
greatest benefit is being able to work equally well on many devices. The advent of the
iPhone in particular is blunting the sharp web-only focus that was present until recently.
Building a service with mobile web, SMS, IM, and email interfaces is entirely possible,
but optimizing for one of them too early can make it very hard to get your service to
work on another platform. FriendFeed allowing inline commenting on content
streamed into it meant that it was harder to build an effective mobile version of Friend-
Feed. The simple posting style of Twitter suits the multiplatform world better than a
threaded commenting model.

A large part of the near future rests on feeds and lifestreaming. RSS is nearly 10 years
old, but it took 6 to 7 years to become widely adopted. The lifestreaming meetings that
are happening in San Francisco (http://therealmccrea.com/2009/01/08/live-blogging
-from-the-activity-streams-meetup/) as I write this book illustrate one possible future.
Activity streams are an attempt to allow actions that happen on one site to easily appear
on another site (for more information, see http://activitystrea.ms/).

The Open Web, a combination of OpenID, OAuth, and similar protocols, talks of a
related future of coherent identity linked to a single account. The RSS adoption story
is relevant here; social applications with networks of relationships and streams of ac-
tivity are barely five years old (three or less if you look at mainstream adoption). What
this will turn into is hard to predict; I’ll have had my own punt at it in this book.
However, building your tools so that you are flexible in terms of aggregation and your
API will mean you can adapt easily. Some form of lifestreaming will become a part of
social applications.

Summary
Social software and communities are all about relationships between people, places,
and things. To make these relationships work in a social software application, it is
important that you understand the activities and implications of the behavior present
in the world you are modeling. Privacy has an enormous impact on modeling any social
application, and implementing it will change the kinds of decisions you can make.

Picking the right objects, giving them persistent identifiers, and then looking hard at
the roles of the individuals using your application will give you a good place to start
implementing it. Place, time, and context will add layers of complexity depending on
the type of application. Lastly, realizing that the objects in your world will connect and
become part of other applications is an important design criterion. Making a useful API
and working with brokerage services will help your application in the long run.

208 | Chapter 11: Modeling Data and Relationships

http://therealmccrea.com/2009/01/08/live-blogging-from-the-activity-streams-meetup/
http://therealmccrea.com/2009/01/08/live-blogging-from-the-activity-streams-meetup/
http://activitystrea.ms/

CHAPTER 12

Managing Identities

Identity is an essential part of how people interact online. The faith you have in some-
one’s identity will color your interactions with that person. The “Real Name” badge
on Amazon, for example, clearly identifies who is writing reviews by using the re-
viewer’s name from her credit card, giving the reviews more credibility. Profile pages
for the people on your site are another key component of this. In this chapter, we’ll
look at the wider issue of identity on the Internet and how this affects your site.

Existing Identities
People will come to your site with an existing identity on the Internet, but all too often
we ignore this potential context and set up new identities that they cannot reuse. A
simple example is the square avatar, which is a visual representation of a person. Sites
usually recommend that people choose an image to use for their avatar. Most people
use a photo of themselves, but this is not obligatory; providing emotionless defaults
tends to encourage people to add their own image and give a better representation of
their identity. Many sites use a 48×48 pixel image, but some use an image that’s 60×60,
and others use one that’s 128×128 pixels. Lately, the trend is for larger avatars. If you
request one of the standard sizes, people are more likely to have an image of the right
size on hand. Do not force people to find an image of themselves, open an editor, crop
the image, and then export it because you think a 160×120 image suits your design.
They may just think it is too much effort and not provide an image at all.

When determining the size of an avatar to use, keep it to a multiple of
four. This will make JPEG compression work better, as it is based on
groups of 4×4 pixels. Allowing animated GIFs will make for distracting
screen furniture and is best avoided.

209

Forms of Identification
Ideally, it is best to require users to log in with their email addresses, reserving the screen
name for use as a public identifier within the application. Thus, there are four significant
pieces of information that identify a person, and the recent OpenID system adds a fifth
(I’ll discuss OpenID later in this chapter). Table 12-1 describes the significant pieces
of online identification.

Table 12-1. Online identification information

Data Description

Email address Used to identify the person outside your application and for account confirmation and password reset.

Password The means of proving who someone is once he has confirmed his email access.

Name of person The real name of the person; usually requested as first and last names. This can be optional; see “Real Names
Versus Aliases and Screen Names” below.

Screen name An internal name for your application, which has two benefits: it avoids using an email address as a public
identifier and avoids duplication in terms of real names. Some systems allow this to be set only once, which
is probably a good idea. People tend to reuse the same unique handle on multiple sites.

OpenID A new system offering an identity that will work on multiple sites; URL-based.

Email
Identity online is still fundamentally based on email. Virtually every site will require
you to use email to verify your identity. Email is used for password reset links and other
forms of account administration. Sadly, it is often abused by spammers, so it is also
fragile. The account administration emails that you will send from your site can look
like spam in that they have small sections of text and URLs to click on. So, how do you
manage to get your emails to your members? It helps if your communications come
from clear email addresses that clearly identify your company’s name. Encourage your
members to add your email address to their address book, so your messages will stay
out of their junk bin.

Real Names Versus Aliases and Screen Names
Depending on the type of community you are running, whether people use real names
may become an issue for you. In general, I think people displaying their real names is
important in many contexts. People should stand by what they believe in. The use of
an anonymous screen name derives from message boards and Internet Relay Chat
(IRC), a real-time text-based chat service. On social applications where people will have
long-term personal relationships, real names are much more common. However, there
are many contexts in which people might not want to use their real names. If someone
were inquiring about a financial problem or psychological condition, he might want to
do this under a pseudonym. Many hobby websites are frequented by people using a

210 | Chapter 12: Managing Identities

pseudonym so that they can chat during their work time, or at least make sure their
hobby isn’t associated with their professional persona.

Amazon implemented its “Real Name” system to improve the credibility of its reviewing
system. Amazon uses the name from a validated credit card as the means of verifying
the name of the reviewer. The Nature Network site also encourages the use of real
names; if people want to associate published papers with their profile, it gives more
validity if the name on the profile matches the name of one of the authors of the paper.

OpenID
The problem of creating a new account for every site and ending up with multiple
accounts has been recognized for years. Microsoft’s Passport system was an early at-
tempt at solving this problem. OpenID is a new solution that makes the problem of
identity management somewhat easier. It allows people to have a single account that
they can use with multiple websites. It provides a means of authenticating that someone
is who he claims to be, and it simply shows that the person has the right information
to verify an account login. OpenID has no means of knowing whether he is actually the
person he is claiming to be or he gained the account information illicitly. This makes
it a lightweight system, but it offers a similar level of security to the common email
account. It is possible to add additional layers of security on top of OpenID.

An OpenID differs from email in that it is URL-based. My OpenID is http://gavinbell
.com/, the same as my personal domain. I delegated this from another provider, which
is something that the OpenID specification supports. I added two lines of code to make
this happen. Delegation means that I can pick a domain of my own choosing while
using an OpenID service provider to manage the actual protocol exchange. It allows
for vanity OpenIDs rather than ones explicitly tied to the service provider.

Developers are likely to use OpenIDs, but most other people will use services from
larger providers. This leads to a hurdle for less technically aware audiences, as their
understanding of URLs is that they are typically places to visit. This is likely to be a
short-term issue, because owning a Facebook page or MySpace account is helping
people to realize that URLs can represent people, just like an email address can. How-
ever, do assess the level of technical understanding of your members and present
OpenID in ways that they will understand. Many services offer an OpenID, so name
these services rather than expecting your members to know that they can use their AOL
identity as an OpenID.

Forms of Identification | 211

http://gavinbell.com/
http://gavinbell.com/

RSS, OpenID, and OAuth Adoption
The last major shift in how the Web works for the general public was RSS, which early
adopters were defining around 2000. It took about five to six years for people to become
comfortable with RSS as a technology, mostly because it is now hidden inside tools
such as Netvibes, iGoogle, and the Yahoo! start page. This embedding hides the raw
acronym-laden technology and packages it in a user-driven manner. You can download
a widget (a mini application for use on a Mac), put it on your Mac OS X dashboard (a
desktop application that Apple uses for hosting widgets), and it will show you the
weather or stock prices or the latest blog feed for a site. People don’t need to know (or
care) about the technology.

Now along come two new technologies at once: OpenID and OAuth. These authori-
zation tools will take time to become embedded and hidden away. The beginnings of
this are apparent already in systems such as MovableType4. Instead of asking people
to use their OpenIDs, MovableType4 asks people to use their AOL ID or their Live-
Journal ID, both of which are OpenID providers. It doesn’t matter that they are Open-
IDs; it is an underlying technology, not the reason to use the ID.

A similar story can be told for OAuth. We do not need to blatantly show the technology
to our audiences; we need to explain the purpose and the implications of what we are
doing. An architect knows about the load-bearing properties of the glass she is using
for a set of steps; the client cares that it is transparent, whereas the architect needs to
know the supplier and the technical details. The same story is true for us: we don’t need
to show off the names of the technologies of everything we use to make our sites.

There are two sides to the OpenID story, and a lot of details, which I’ll cover in Chap-
ter 16. Essentially, there are OpenID providers that offer OpenIDs to the general public,
much in the same way as there are webmail providers. In fact, there is an increasing
overlap in webmail provision and OpenID provision.

Then there are sites on which you can use an OpenID. These used to be called OpenID
consumers, but now they are known as relying parties, to avoid confusion with members
of the public, who are also known as consumers. If you are building a new application,
it is relatively easy to become a relying party.

OpenID has seen rapid deployment. Both Yahoo! and AOL allow everyone who has
an account with them to use it as an OpenID. So, there are hundreds of millions of
OpenIDs, but the actual number in use is lower, and the number of relying parties is
lower than the number of deployed OpenID providers on the Internet, particularly from
established websites. New startups and new projects probably should offer OpenID-
based login, but refactoring existing identity systems is slow work. Accepting OpenIDs
is a bit more involved if you have a bespoke login system already, as you will need to
modify your existing sign-up code. While writing this book in 2008–2009, I saw a
gradual increase in the number of companies accepting OpenIDs; uptake seems to be
faster than with RSS.

212 | Chapter 12: Managing Identities

OpenID works well as a replacement for simple email address and password-based
login systems. To support systems such as banks or other similar sites, additional se-
curity tools such as a secure login token from RSA are needed. *

Tips for Account Registration and Verification
There are many elements to creating a secure account registration system, and it is easy
to miss one of the important ones, such as never sending passwords by email. The
following list gives a good set of guidelines for creating a secure system:

• Require email verification. Without email verification, you have no proof of iden-
tity. Ensuring that your members can give you an email address and then receive
an email with a unique code at least proves they have access to that email account.

• Never send a username and password in the same email. This is a common mistake;
actually, you should never send passwords via email period. By sending both in
the same email, though, you are giving away all of the identity information for a
person in one neat package. People really do scan networks for passwords, so avoid
sending passwords by email.

• Do not provide a password reminder service; provide a password reset link instead.
The person’s email address is obviously included in the email, so by including the
password in the reminder service, you have given the whole game away.

• Never use email as the public username on your site. This is an invitation to spam-
mers. Email addresses are important and valuable, so respect them. Though they
are readily available, unique names, let people pick their own usernames.

• Avoid weak passwords. Help your readers choose a good password. Give them
real-time feedback as to how good their password is. You are protecting everyone
on the site by ensuring good passwords. Mixed case, numbers and letters, punc-
tuation, and length can all be used. Avoid using words in the dictionary.

• Do not use a maiden name or place of birth as a reminder question. Bank sites use
these questions and it muddies the security.

• Allow people to pick their own screen name; there's a better chance they will re-
member it if they choose it.

• Use at least 256-bit SSL (Secure Sockets Layer) to protect password login to a site.

• Never store an unencrypted password on your site. Instead, store a hash of the
password. There is no need for you to ever store an unencrypted password for your
users.

• Never tell someone which of the username or password was incorrect when a login
fails. If you give separate advice on password and username being incorrect, you

* RSA is a company specializing in security products; it helped to define the OpenID standard.

Forms of Identification | 213

are starting to chip away at the security of the service. If both password and user-
name remain private, a fraudulent person needs to guess both.

The Need for Profile Pages
Once you have a number of people on a site, it is helpful for them to be able to identify
one another on a recurring basis. A common way to do this is to give them a profile
page. Profile pages have been around for a while; message board software has had the
notion of a user’s page for a long time. However, look at the more distributed world of
blogging: people can leave a URL that represents them, but it will not be able to hold
a record of their contributions to that blog or to other blogs—it is simply a calling card.

Who Really Exists on the Internet?
There are several levels of identity on the Internet. The one that most technical people
are familiar with is the highest level: owning your own domain name that you alone
use. To have a domain such as this requires some technical sophistication and a level
of investment. You need to purchase a domain name, obtain a hosting account, and
often install software. Some systems, such as Tumblr and TypePad, obviate the need
for the latter two requirements, but you still need to buy a domain name.

Below this level is sharing a domain, where a friend or relative offers some part of her
hosting account. Most small companies fit into this category.

Then there are the various profile pages on the Internet that people also call home; for
example, a profile page on Flickr.

The last level of identity on the Internet and the most common is the email address,
but it is not a domain name. Virtually everyone who accesses the Internet will have an
email address, so all identity needs to work at this level.

Occasional use of the Internet on a friend’s computer would be an example of someone
who was on the Internet but did not have an email address. There are also a surprising
number of shared email addresses in use. Difficulty in setting up computers and email
software with more than one account makes this issue persist. Family email addresses
and spouses who share email addresses are the most common examples of this.

From people owning multiple domains to people sharing email addresses makes for
quite a spread of identity types to manage. But focusing your efforts on the email-
address-owning side of this balance will cater to more people. Do not expect everyone
to have a domain of his own.

Profile Page Anatomy
A profile page on your website that represents a unique person is a real benefit. How-
ever, a lot of pressures and requirements dictate how this page should be constructed.
The page needs to represent two aspects of the person: his activity on your site in terms

214 | Chapter 12: Managing Identities

of content or of the activity she generates, and her wider existence on the Internet. The
profile page also needs to allow other people to add her to social networks that your
site supports. Often, more than one type of page is needed to represent a person; es-
sentially public pages represent the person on your site and private pages offer the person
tools or unique views of the site. Many sites separate the activity page from the profile
page; for example, Flickr has a profile page and a photos page. However, some sites,
such as Facebook, Twitter, and Dopplr, keep the activity and the profile pages to-
gether. Chapter 13 explores these activity pages in greater depth.

Let’s look at some typical profile pages and see what features are needed to update
them. You can ask people to put many types of information on their profile page. Some
of the information is simple in structure and some of it is more complex. The complexity
of the information on a page is a good guide as to whether to use a new page for data
entry. Geographic locations, publications, and affiliations are good examples of com-
plex data which is best entered on a separate form. These types of content often require
multiple stages of entry or a confirmation stage. Most other types of content work well
on a single, editable form on a profile page. On these types of forms, all the displayed
text fields can be made editable and there is a single save control at the base of the form.
Table 12-2 shows some of the typical information to include on a profile page, and how
you might want to gather or display the information.

Table 12-2. Profile page information

Property Description

Real name Allow first and last names to be entered separately so that you can use the first
name as a greeting.

Screen name Make this obvious and visible; it is also likely to be used in the URL for the page,
so consider allowing it to be set only once (see Chapter 11 on URLs).

Gender Consider whether you need this information at all; certainly make it optional to
display.

Age Determine whether you need to gather this information for legal reasons; make
it optional to display.

Email Gather this as part of the sign-up process. It should not be publicly visible, but
optionally visible to contacts.

IM (Instant Messenger) Make this optionally visible; consider making this an active link, AIM, or similar.

Web page Create a link to the person’s web page for her wider identity on the Internet (see
Chapter 14 on the XFN microformat).

Bio Provides a free-form description of what the person does.

Interests Displays lists of films, music, and authors; very common on websites with a more
social focus.

Location Geographic location is an increasingly important area on the Web (see Chap-
ter 11 on modeling data).

Current affiliation Useful on job-related sites; displays job title and employer.

The Need for Profile Pages | 215

Property Description

Previous affiliation Allows maintenance of a record of previous affiliations. Can be simply a list of job
titles and employers, or can be more complex and include dates of employment.

Recommendations Provides the possibility for recommendations or endorsements. Control over dis-
play of recommendations should reside with the owner of the page.

Publications/examples of work Offers links to external content that might be appropriate, depending on the site.

Avatar Provides a visual identity for the person.

Add to network/friend or contact indicator Allows you to add someone to a viewing network, or allows an indication of the
current relationship status. This link should be displayed only in context.
Logged-in people can add someone they do not know to their network. For people
who are already connected, it should show state.

Link to person’s network Provides a link to the network for the person or a sample of the network; on some
sites, such as LinkedIn, display of this is under the control of the profile owner.

Recent content/activity Shows the recent updates from the person, or a link to the person’s content on
the site.

Real-World Profile Pages
How detailed you make profile pages for your audience will depend on the depth of
engagement and type of relationship you have with them and they expect to have with
one another. There is also the degree of familiarity that you expect within social net-
works. Despite claims to the contrary, the majority of social networks consist of pre-
existing groupings of friends. People tend to add people they already know or have met.
Among web conference attendees, there is usually a post-conference rush to add in-
teresting people they met at the conference. For a few years, Flickr was the primary
focus of this activity. Now it is Twitter and, to some degree, Dopplr.

Pownce

Pownce had a nice approach to profile creation: simple and basic, but also fun. Pownce
chose to make gender choice entertaining; rather than the simple defaults of male and
female, Pownce gave a wide range of words to choose from, such as dude, gentleman,
and the more prosaic male. Pownce was about sharing content with your friends, and
this approach to sign up gave character to the site and reflected the air of friendship
underlying it. The help provided in the green box alongside the sign-up fields was useful
and encouraging, as shown in Figure 12-1. Figure 12-2 shows the profile.

216 | Chapter 12: Managing Identities

Figure 12-1. Pownce sign-up form: simple, straightforward, and friendly

Figure 12-2. Pownce profile showing updates from contacts

The Need for Profile Pages | 217

Twitter

The Twitter sign-up form is even simpler and uses a few clever tricks. When you create
a profile, Twitter automatically checks for the availability of your screen name (user-
name) and clearly shows what the URL will be for your page (see Figure 12-3). Twitter
also tries to stop automated sign-ups, often used by spammers, by using the ReCaptcha
service. The ReCaptcha service shows pictures of text taken from library scans and asks
the person signing up to enter the words. This is an extremely difficult task to automate,
so it ensures that the person completing the sign-up is a human and not another
computer.

Figure 12-3. Twitter sign-up form, showing profile name checking and the ReCaptcha antispammer
measure

The sign-up happens over HTTPS, which is respectful, given that you are supplying an
email and your password. Lastly, Twitter gains opt-in mailing list preferences as part
of the sign-up. This is a good, simple, minimal profile to capture (see Figure 12-4). It
can be extended with a bio and an avatar later.

218 | Chapter 12: Managing Identities

LinkedIn and Nature Network

LinkedIn (Figure 12-5) and Nature Network (Figure 12-6) have formal profile pages.
The relationships come from a work or professional context, rather than a purely social
context. Completing the full profile on LinkedIn is a lot of work, but LinkedIn lets you
fill in a little bit at a time, suggesting the next piece to add and showing the percentage
you have completed. This is a clever feature, as full profiles help LinkedIn to connect
people, but expecting people to spend an hour or so completing forms in one step is
unreasonable. A few minutes here and there over months or years is not noticed.

Traditionally, marketing departments have wanted to get as much information about
new sign-ups as possible. This has often resulted in long, detailed sign-up forms. The
LinkedIn version is a good example of a gradual registration approach. Creating a sys-
tem whereby people can sign up as quickly and easily as possible is the starting point.
Then you need to create multiple opportunities for them to add information to their
profile. The “percentage complete” prompt is a gentle encouragement. Map out all the
information you would like to obtain and see where on your application you can capture
this information with the least amount of effort on behalf of the new member.

Figure 12-4. Twitter profile

The Need for Profile Pages | 219

All activity on a site can be valuable data in terms of building up a person’s profile. A
behavioral tracking system such as this will look at all aspects of a person’s interactions
across the site, including people, content, and activities.

Nature Network in particular wanted to create a means to find people who are prac-
ticing scientists in particular fields so that members could strike up a relationship for
collaboration. Hence the decision to allow one-way relationships, adding someone to
your network does not automatically add you to their network. This works well for
famous scientists, who are not obligated to automatically add every junior researcher
who follows them.

Nature Network was keen to allow people to add publications, as these are the lifeblood
of practicing scientists. The product also had to take into account other people who
may not have a science publication. So, contributing a publication is not a mandatory
part of sign-up; limiting Nature Network to only published scientists would create an
age restriction of mid-20s, as it takes time to be published in science. It is best to have
as few mandatory aspects to your profile as possible.

Figure 12-5. The LinkedIn profile, which can be filled in gradually, one element at a time, over months
or years

220 | Chapter 12: Managing Identities

Personal network member maximums

One curious aspect of social networks is the desire of some users to add as many people
as possible to their network. They essentially turn it into a game, trying to find the
system maximum for the social network. Regardless of what content area you work in,
there will be someone who will try to add everyone to his network. If you have a page
that naively lists all updates from a person’s network for the past 24 hours, this manic
follower is going to create unexpected stresses on your infrastructure.

Activity Pages
One of the benefits of having a unique identifier for each person is that you can list all
the content or activity that person has created. This is a marked change from traditional
message boards. At best, message boards allow for a search on a per-user basis; some
show the last few posts made by a person.

Instead, most social networks or applications offer a date-based listing of all content
the person has ever contributed to the site. This simple concept evolved from the blog-
ging practice of listing authors’ previous entries in reverse chronological order. The
dates are not always prominent; sometimes it is a simple list containing entries with
dates beside them. Figure 12-7 is an activity page from Last.fm.

Figure 12-6. The Nature Network profile, which is aimed at scientists showing affiliations and
publications

Activity Pages | 221

These pages contain all of the activity for a person under a unique username or screen
name; often they have the person’s real name on the profile, or referenced in the content.
The profile page strongly represents the person; it shows both recent tracks listened to
and recent activity in terms of loved tracks and connections with new people. There
are separate pages for the person’s library of artists, favorite tracks, and friends. Having
a composite view as well helps to give a quick sense of the person. The next chapter is
all about activity pages.

These profile pages and unique screen names are valuable. People are generally invisible
on the Internet until you go looking for them. Over the past few years, there have been
countless stories of companies hiring interns to investigate job candidates’ presence on
the Web. It is important that your audience is aware of what their profile offers their
friends and the world.

Invisibility and Privacy
One aspect that most startles people when they start using social networks is the easy
access they can give the rest of the world to search for them by name. Certainly a number
of Nature Network scientists wondered how they became so visible on a Google search.
If you have been using the Internet for a while, you have become accustomed to being

Figure 12-7. Last.fm personal activity page, showing recently listened to music

222 | Chapter 12: Managing Identities

visible and highly connected. However, explaining this visibility to your community
can be hard. This is particularly a problem if you are already a major publisher and
have a strong position on the Internet, as was the case with Nature Network.

It is important to ensure that your community is aware of what happens when they put
content online, and that they have a good sense of what content is publicly visible. They
will come to you first if they find their content being misused. (In Chapter 17, I will
explain a strongly related topic: your API’s use of their data.)

Good, clear privacy controls and straightforward communication regarding who can
see what content on your site is essential to your community’s peace of mind. There
are great benefits from aggregation in terms of being able to find and follow people,
but this means people and their activities are often publicly visible on the Internet in
ways that were not available before. I’ll pick up on this in Chapter 14 when I discuss
making connections.

A final note on privacy: you should clearly indicate privacy states on your own site. On
Twitter, you can see a padlock next to each private tweet. On Flickr, you can see a
yellow badge indicating that the image is for friends or family only. However, it is
important that this is carried through to remote clients. Twitterific and Tweetie, two
popular Twitter clients, do not show the private status of a Twitter message in the same
clear manner as the web-based Twitter interface, which can lead to inappropriate reuse
of otherwise private content.

There are other ways to make the activity of your community private. Flickr, for in-
stance, provides privacy controls to hide a user from a profile search so that the user
can be browsed but not found from the search box. It is also possible to allow people
to opt out from having their content indexed by search engines. A norobots directive is
added to the HTML meta tags for Flickr’s pages, which search engine robots will see
and obey by omitting the page from their index.

Giving your community control over their visibility is important. Allowing users to hide
themselves entirely is the easiest option. Allowing users more fine-grained control over
their presence on the Internet is important, but more complex to implement. Last.fm
lets its users hide their real-time track-by-track listing, showing only the aggregate
counts of music that a user has listened to. Depending on the application you are cre-
ating, it will be appropriate to allow content-level hiding or activity hiding or entire
profile hiding. Similarly, making sure your community understands what aspects of
their behavior on your site are public is equally important.

Invisibility and Privacy | 223

Summary
Profile and activity pages are the core of making useful social software. You need to
clearly inform your audience what the pages contain and give them tools to manage
their representation of themselves on your site. It is their identity and their data, not
yours. Make it secure, simple, and safe for people to sign up and easy to access when
they forget things such as their username or password. Having unique validated iden-
tities means you have real, visible people inhabiting and interacting with one another
on your site.

224 | Chapter 12: Managing Identities

CHAPTER 13

Organizing Your Site for Navigation,
Search, and Activity

Social applications create extra challenges for navigation design, as each person using
the site has a unique personal view of the content. Within that unique context, you
need to help people understand how information is arranged on your site so that they
can find relevant people and content.

Three key pages usually vie to be regarded as the home page. These include the personal
home page, which usually shows the member’s recent updates to the site and those
from friends. Then there is the more traditional home page for non-members. (Chap-
ter 18 has several examples of these and discusses which style might be appropriate for
your audience.) Finally, some sites need a non-personalized home page that allows the
site owners to announce new features and content. The addition of tags and people
acting as links also changes the overall navigational structure for a social application.

Once you let people inhabit your site, they need a different type of navigation from the
classic lefthand navigation area pointing them to the content section. Your site has
become less like a book and is less linear; you have an application that houses content,
people, and tools and people move around within this new space in different and very
personal ways. It is also not like a shop or product site. People will have a long-term
engagement with the site (we hope), whereas shops are focused on making things easy
to find and purchase and are very goal-driven in their navigation. As a result, we need
to design a social application for social engagement.

This chapter is about letting the people on your site create navigation for themselves,
while providing the framework they need to feel comfortable. Toward that end, we’ll
look at tagging, and we’ll explore the differences between site home pages and personal
home pages and how you can create them. Lastly, we’ll explore the different kinds of
activity pages you need to create to let your audience follow the interactions that are
pertinent to them.

225

Understanding In-Page Navigation
Why does standard, hierarchical navigation fail on social sites? Standard lefthand nav-
igation derives largely from the table of contents in a book or brochure, so when all the
items of content are known in advance, it works well. However, when the structure of
a site is based on less well-ordered information or the relevant information is personal
to an individual, context becomes more important.

The key distinction is between content and activity. The kinds of community-oriented
sites you are building are much more focused around activity, so the common lefthand
navigation bar—which offers passive signposting—disappears and a more
verb-oriented navigation takes over, reflecting the actions performed by the people on
your site.

A catalog-based site, such as a product-oriented site for, say, bikes, will have a product
page and some support pages. There might be 20 to 30 different types of bikes for sale,
but there is an order and simplicity to the presentation. You can scale this approach
up to a bigger shop, such as a department store or an online retailer such as Amazon,
and it still hangs together. There is internal consistency in the information, even if there
are millions of the product items.

However, if you move over to something such as Vox or Flickr, product-driven con-
sistency evaporates. There are different kinds of content on these sites, and there are
thousands of items of content at a time, or billions in the case of Flickr. In these cases,
catalog approaches break down; there are just far too many items to enumerate or
classify in one space. Therefore, classification becomes a pertinent issue with
community-generated content. If you tried to go with a single ordering or taxonomy,
who gets to define it? The content belongs to your audience, so can you realistically
impose order on their content? Probably not; even if most of them would agree to a
single taxonomy, it would be difficult to manage and evolve. Handling the issue of
millions of items is more difficult on a site such as Flickr, as the object is always the
same. There are billions of photos on Flickr; on Amazon, there are millions of books
or CDs, but they all come with clear associated metadata, such as author or artist name.

Tagging Content
As we talked about briefly in the sidebar “Tags Create Navigation” on page 147, tagging
is another approach to classifying content. Thomas Vander Wal coined the term folk-
sonomy (http://www.vanderwal.net/folksonomy.html) to describe the kinds of emergent
classification schemes social networks employ, by allowing freeform tags on content.
The term comes from a concatenation of folk and taxonomy; it is loosely defined as a
people-generated taxonomy. In a taxonomy, such as the Dewey Decimal System for
library classification, there is a formal, fixed set of keywords in categories, which can
evolve slowly over time. In a folksonomy, the keywords are known as tags, and there
is no overt classification. Meaning emerges simply from frequency of usage. The items

226 | Chapter 13: Organizing Your Site for Navigation, Search, and Activity

http://www.vanderwal.net/folksonomy.html

tagged “swan” define the term by being tagged. They tend to evolve more rapidly than
a taxonomy, but they are also messy. The items tagged “turkey” will include both birds
and the country.

A tag is just a word on an item of content. The word means something to the person
who is labeling it. People apply tags largely for their own benefit to allow them to
retrieve their content later. Other people’s tags will hopefully translate well for you,
but you might not understand the context. For instance, the tag “red” can mean very
different things on Cork’d (a site about wine) and Flickr. The same word can also
encompass multiple meanings on the same site, too; the turkey example from earlier is
a good one.

Most often, though, tags work well, as they solve several problems. They provide labels
for content, which then offers a new means of navigation and search. They devolve the
classification issue to the person best suited for labeling the content: the person who
created it. Finally, the labels can be associated with each other to derive collective
meaning about people, groups, and places (see Figure 13-1).

Figure 13-1. Flickr “kitten” tag

The Flickr tag page in Figure 13-1 shows the public pictures on Flickr that relate to the
word kitten. By default, they are ordered by most recent, but they can also be sorted by
interestingness, as discussed in Chapter 10. It is possible to see related terms so that
you can easily explore a subject area. Using tools such as this, it is easy to spend a long
time looking at content on Flickr, without having to go to a formal home page or think
about a hierarchy.

Finally, it is possible to explore clusters of tags related to the word turkey, as shown in
Figure 13-2. These are automatically generated groupings of tags based on frequency

Understanding In-Page Navigation | 227

of usage. Using these clusters, it is possible to separate pictures of Turkey the country
from turkey the type of bird.

Another significant difference between people-led sites and content-led sites is the
amount of context-led navigation on them. The tags provide in-page navigation to
discover related content. If I tag something “tiger,” then (depending on the site design)
clicking on the tag will lead you to more of my things tagged “tiger” or more of every-
one’s things tagged “tiger.” Often, both are available, as shown in Figure 13-3. Pro-
viding navigation with a sitewide scope and a local scope is difficult but important to
achieve. If you click on a tag, e.g., “tiger” in Figure 13-3, you will be shown other tiger
pictures that person has taken. Clicking on the globe icon takes you to pictures by
everyone with that tag, as the pop-up label explains.

Figure 13-3. Flickr tag navigation

Figure 13-2. Flickr “turkey” tag cluster

228 | Chapter 13: Organizing Your Site for Navigation, Search, and Activity

In addition to tags, there are the links to someone’s profile page, her recent content,
and, potentially, location-related information. Combined, these offer a wealth of
possibilities for context-based navigation. This kind of rich context is impossible to
represent in a static hierarchical navigation system. In addition, you can provide
jumping-off points such as personal profiles, tag pages, and geographic location pages.

Tags and other contextual information split up the amorphous mass of content into
reasonably meaningful chunks, but what about the people? Providing a means for peo-
ple to find one another and then to keep track of the content they create engenders two
separate problems to solve. The first one is a search problem, and the second one is
much more complex, as we will see later. There is a third related problem that is simple
to state—provide the ability to search the content—but is hard to implement well.
Chapter 16 looks at search for content.

Searching for People
Searching for people is a problem that seems easy to solve, but when you have lots of
people on your site, it scales badly; for instance, Twitter removed people search capa-
bility for months because it had such a negative impact on site performance. So, it can
be tricky to get right. The basics are deciding on what you will let people search and
who you will let search. First name and last name are obvious candidates on what to
search, plus the screen name or username people have chosen. There is an underlying
privacy issue involved with searches, however—do you let people search by email ad-
dress? Searching by email domain is a bad idea, because it can give too much informa-
tion regarding a company’s participation on an application, or it can allow speculative
search for people. If you decide to allow searching by email address, you should allow
only whole email addresses as the search term: searching for all the “@gmail” addresses
on a site might allow for email address harvesting, which you want to avoid. Email
addresses should never be returned as search results. That makes it far too easy for
spammers to gather them.

A second factor concerns what you show in terms of search results. What information
on a person’s profile page does the person regard as private (an issue we looked at in
Chapter 12)? What sort of information you host for people will have a bearing on the
answer to that question. Figures 13-4 through 13-7 show screen shots of people search
results on Flickr, Last.fm, and Facebook. The most sensitive information is location
(see Figure 13-7), which Dopplr manages in a discreet manner, showing next location
but not time frame.

Flickr shows basic account statistics on the search results page, but shows all public
information on the person’s photo and profile pages. You can make photos private on
Flickr, so you are not giving everything away. Some of the profile elements can have
individual settings, too; email addresses can be set to friends only, for example.

Understanding In-Page Navigation | 229

Facebook allows people to decide how much of their profile information should be
available in a public search, which gives them some degree of privacy from inquisitive
employers and old friends.

Last.fm is probably the most public of the sites. On this site, your music listening habits
are publicly available to anyone who wants to look, though you can hide the real-time
display of what you are listening to.

Dopplr provides a simple list of matching people’s names and their main country of
residence. One of the underlying beliefs of the Dopplr developers is that you should
know the people you are intending to make a connection with, so providing a minimal
public profile suits the approach of the site.

LinkedIn actually charges for its people search feature; on LinkedIn, you can find many
people, but only if you pay for an account can you contact someone whom you do not
know via a specific internal email for LinkedIn, called InMail. This account also pro-
vides more detailed results and more means to search for people.

Figure 13-4. Flickr search results for “Gavin”

230 | Chapter 13: Organizing Your Site for Navigation, Search, and Activity

If the information on your site is sensitive, you will want to have a slightly guarded
approach to search capability, even going as far as making people register before they
can search on the site. Deciding what profile elements are public and which you allow
member control over is an important task. A search feature helps people find one
another, which is good. However, you want to ensure that the people who are found
in the search results are aware of and happy with the level of disclosure about them-
selves that your site allows. Good communication with your members is especially
important if you change the scope of privacy on your search tools.

Connecting People Through Content
Profile pages can act as connectors to other content in that reading a comment or seeing
an image in a search and clicking on the link for the person who left the comment or
image will usually take you to that person’s profile page. Sometimes it will take you to
the person’s main content or update page (Flickr and Twitter do this). Regardless, you

Figure 13-5. Facebook search results for “Gavin”

Connecting People Through Content | 231

have moved from the objects you were looking at to focus on a new person. Choosing
something on the person’s profile will take you in a related, but perhaps different,
direction. This kind of pivot through a social application is quite common. In this way,
content can be seen as a means of connecting people.

Each person’s update page shows his recent updates on the system, be it places visited,
comments made, or songs listened to. Update pages act as dedicated search results for
individual people.

Providing Activity Pages
Social applications use three core types of pages to define people:

Profile page
This is often a static page that represents a person. It may abstract some content
updates from the update page (discussed next), or it may simply be a biography
page. Blogger and Flickr have static profile pages. Last.fm has a mixed page type.

Update page
This shows a person’s most recently contributed content. Virtually every site has
one of these pages. They form a primary focal point for their social objects. If the

Figure 13-6. Last.fm search results for “Gavin”

232 | Chapter 13: Organizing Your Site for Navigation, Search, and Activity

people on your site generate a series of social objects, this is the page where these
objects are gathered.

Activity page
This tracks the contributions of others so that you can get a sense of what is hap-
pening on the social application. Dopplr’s Journal page and Flickr’s Activity page
are extensions of this concept. Flickr’s Your Contacts page is a good example of
pure updates from other pages. Some applications do not readily support this kind
of page. For example, a “collected music your friends have listened to” page for
Last.fm would be hard to make contextually meaningful.

The profile and update pages are pretty straightforward in terms of how they operate.
Activity pages, however, are unique to each person, and probably have the most var-
iance in terms of their form and behavior. They allow the people on your site to keep
tabs on one another. A first attempt to create an activity page would lead to a simple
page showing the recent activity from anyone the person has marked as a contact. This
is where many sites start.

Figure 13-7. Dopplr search results for “Gavin”

Providing Activity Pages | 233

However, what about the comments on content that a person has created that do not
come from people in his social network? This is a second source of activity. Then there
is the content created by people outside the person’s social network that the person
has commented on and the subsequent stream of follow-up comments. This becomes
a third source. Finally, there is the content from everyone outside the network. So, as
you can see, there are many ways to organize the information that flows through social
networks, even from the point of view of one person.

This topic is complex. Table 13-1 summarizes some types of sources and recipients as
well as which kinds of pages capture the new content flowing to the people on your
site. There are many variations to the norm in displaying this information, as companies
attempt to discover the right balance between privacy, disclosure, and server load.

Table 13-1. Degrees of privacy in site content sources

Source Public or private

My new content Generally public

My friends’ new content Generally a private view for an individual

Everyone’s new content Generally public, but often not available as a bulk real-time feed, though
this is an area of growth

Comments on my content Generally private, but not on blogs

Replies to my comments on my friends’ content Generally private

Favorite activity by me Often private; public on Flickr

Favorite activity on my content by others Generally private

Content from groups of which I’m a member Can be public or private depending on the group type

Responses to group activities Unique private feed of public content

Merging some of these content types together into a composite page type is becoming
more popular. Following an approach where each content type gets a page of its own
can lead to a very unclear organization with many pages each having irregular updates.
Consolidating all the external activity into a single page makes the page easier for other
members to check. Aggregated activity pages can end up with a large amount of rapidly
changing information on them. Tools to filter and control them are important; this is
covered later in the chapter.

Determining Activity Page Content
Once you have mapped out the potential pages you want to build, then you need to
determine how to limit the amount of content that appears on the page. No one wants
to see all comments ever left for her by people in her network. The choice is basically
between content posted during a specific time frame or a maximum number of entries
per page. I encourage you to consider time frames. I think they are easier for most people

234 | Chapter 13: Organizing Your Site for Navigation, Search, and Activity

to relate to and they do a better job of handling the uneven rate at which events can
happen, such as sudden flurries of activity.

Let’s look at a possible scenario.

Joe goes on holiday for a week and comes back. His network has been really productive
and there are hundreds of new things for him to look at. The network activity page for
Joe should not show everything. Pagination is a sensible option for handling these
update pages, allowing 50 to a page and any additional updates on further pages.
However, this is still a big database query to run and cache, so it is worth exploring a
bit more.

Every person in Joe’s network will be generating new items at varying rates, all of which
will be new for Joe since his last visit. You do not want to mark every item in the database
as seen or not seen by each person, though a last-viewed timestamp is useful. So, how
do you manage to show Joe only the important new stuff? Curtailing the volume by
use of pagination makes sense, but it does not respect the level of importance of the
new items. There are different solutions to this problem, depending on the rate of
content generation within your community, and all of them are based on some form
of filtering. It is difficult to second-guess exactly what Joe would think is interesting if
he had time to look at every update, so we need to rely on some heuristics. The following
examples are how some real-world sites have addressed the issue of new content
updates.

LinkedIn has a slow rate of new content, so it shows everything. Each update is also of
high value; it is a connection between people you know or a job change for someone
to whom you are connected.

Flickr has a rapid rate of new pictures arriving, so it gives a range of options to stem
the tide. You can choose to see five at a time from a person, or just one at a time. You
can also select from friends only or from friends and contacts. If someone has taken a
lot of pictures, looking at his photo page will show you all the images that he has taken,
organized in reverse chronological order. This works well for Flickr, because people
might upload more than 100 pictures at a time. In terms of comments, Flickr combines
favorites, tagging, and replies onto one page, but it collapses the replies to the last 10
on any photo.

Nature Network shows all activity from everyone in your network, but limits the view
to the previous two weeks. This design decision was based on community scale and
relative importance of the content. The Nature Network community is smaller than
the Flickr, LinkedIn, and Facebook communities, so it can still show everything. Also,
the updates are more likely to have a bearing on what someone does in her career,
because the discussion is about science. Over time, Nature Network might give options
to drop some of the content types, such as replies to a forum topic, but it would retain
published papers, therefore keeping the higher-value content visible. Collapsing mul-
tiple replies into threads is a possibility, such as listing an update as “Simon Collins

Providing Activity Pages | 235

and 27 others replied to this topic.” All the detailed replies are not displayed, so other
information can be seen.

Facebook takes an interesting approach. On Facebook, you can vary the kinds of con-
tent you get in its news feed from personal updates to group memberships and new
photos. However, you get only a sample of the activity from your friends. This sampling
allows for the social grace of plausible deniability: just because you updated your
Facebook page doesn’t mean all your friends will see it. One way to describe Facebook’s
approach is lossy, in that you do not get every update from every friend.

The Facebook feed is not the same as a direct communication, and therefore the feed
can be easily overlooked (sometimes deliberately). This can be helpful in tightly knit
social spaces, as it avoids the small-town feeling that 100% communication would
promote. The updates are there if you wish to visit each person’s page, allowing you
to see exactly what a close friend is up to, if you want to. In most social relationships,
this flexibility is sensible. This sampling of updates also scales well, as it does not re-
trieve every single update. Facebook relaunched with a real-time update interface in
spring 2009, taking the approach that Twitter has taken, but this results in high volumes
of updates.

Filtering Activity Lists and the Past
Filtering content based on strength of relationship, usually denoted by a friend or con-
tact, is common and effective, but many sites now offer only a single level of relation-
ship. More advanced approaches can be based on coincidence of mutual friends—for
example, two or three friends commenting on the same picture is arguably more in-
teresting than one friend posting an image. However, these kinds of analysis can be-
come expensive to generate when you have a large number of people, large contact lists,
and/or high rates of new content production.

Another aspect to think about is the previous kinds of activity streams. Three months
ago is a reasonable time frame to consider. Should the default view be the same as the
view of today or yesterday? Filtering this data so that the significant events from the
person’s account and from her friends show up rather than every single event seems to
be a reasonable approach. You also need to decide how far back you will show activity.
Will you show activity from the launch of your site until the present day, or back to
some limit determined by the size of the cache you are willing to maintain?

Maintaining 100% of anything is a big commitment. You will need to find a balance in
terms of value to your community and cost to your company. Twitter search goes back
only a few months, and the stream of your updates does not go back to the start of your
involvement on the site. At the time of this writing, about 75% (3,200–4,200) of my
updates are visible for me (which equates to about 20 months’ worth of my updates).
Flickr can show all your pictures from day one on your photostream. The relaunched
home page (in September 2008) shows all the social interaction you participated in

236 | Chapter 13: Organizing Your Site for Navigation, Search, and Activity

right back to the beginning of your involvement on the site. These kinds of 100%
delivery promises are substantial in terms of servers and engineering. Promising to
deliver the last 50 of something is quite a different offer from promising users everything
they have ever done on a site. Kellan Elliot-McCrea, a Flickr engineer, gives a good
explanation of the technical implications of implementing activity feeds at http://laugh
ingmeme.org/2009/03/18/streams-affordances-facebook-and-rounding-errors/.

Using Replies to Create Conversations
Getting direct feedback on your content is satisfying. Having someone leave comments
for you can brighten your day. Similarly, if you leave a comment on someone else’s
content it is beneficial to be able to see whether he or someone else has responded to
your comment. Tracking these two streams of replies on your content and replies to
your comments can happen on different pages. The streams are focused on different
original sources of content, one being “your stuff” and the other “their stuff,” so keeping
them separate can make the interface work and language used to describe the func-
tionality easier.

Some sites keep these two reply types on separate pages, while others mix them together
as a single conversation. Flickr changed from separate pages to a unified activity page
in September 2008. The Webmonkey article at http://www.webmonkey.com/blog/Flickr
_Home_Page_Update_Exposes__Hidden__Social_Features gives a good overview of the
changes.

In the remainder of this section, we’ll look at Flickr (Figure 13-8), Nature Network
(Figure 13-9), and Dopplr (Figure 13-10) as examples of how to manage these social
relationships. Not just comments fall onto these pages. Rather, any sort of interaction
will appear. In the case of Flickr, this includes comments, tags, and favorites for your
photos. For Nature Network, it includes replies to the topics you raised on the site.
Dopplr consolidates activity onto a journal page for documenting social interactions
around traveling. The Dopplr journal page works because the rate of activity on the
site is slow enough; people generally travel only a couple of times per month, at most.

Flickr includes the replies to your comments on other people’s photo pages. Also, you
can track responses to your comments. Allowing this view of comments encourages
conversation around the photos, though you can also mute updates for photos for
which you are no longer interested in seeing additional comments. Certainly, I have
seen many conversations continued in this manner. It will also show favorites marked
on your photos and tags other people applied to your photos. There is no separate page
for tags or favorites from others; they are integrated into this single view.

On Nature Network, the two key response-led pages are the replies page that lists
subsequent responses on any forum post on which you have previously left a comment,
and a separate page that lists replies to any topic that you initiated on a forum. Keeping
these pages separate made sense when considering the degree of involvement for the
person viewing the page, in that if you initiate a topic, you have a different role than if

Filtering Activity Lists and the Past | 237

http://laughingmeme.org/2009/03/18/streams-affordances-facebook-and-rounding-errors/
http://laughingmeme.org/2009/03/18/streams-affordances-facebook-and-rounding-errors/
http://www.webmonkey.com/blog/Flickr_Home_Page_Update_Exposes__Hidden__Social_Features
http://www.webmonkey.com/blog/Flickr_Home_Page_Update_Exposes__Hidden__Social_Features

you make a comment on an existing topic. Nature Network is unlike the other two
examples in that it comprises several different types of content, from events to message
boards. It is an example of federated social software, whereby a series of applications
integrate with a social network core: there is an events application, blogging provided
by Movable Type, and the message board software.

The Dopplr travel journal page comprises a list of relevant activity for you on the site.
Dopplr doesn’t support conversations, but it shows coincidences, which are times when
two or more people who you know are in the same place. This allows you to broker
introductions. The journal page will also show you new people who have shared travel
details with you.

Twitter used to have a “with others” page that was a combined activity page showing
the activity from the people you follow, which was publicly available to anyone who
looked at the page. (People who are hiding their activity are not shown on this view.
The page showed only the Twitter messages from people with public profiles and those
who you had permission to follow.) This “with others” page is a tricky concept to
follow. Two people on Twitter will follow a different set of people. Being able to see
the messages that another person is reading can help you to understand a comment
made in reference to a message from someone you do not follow. However, there is a
privacy concern here, as not everyone who the other person is following will have al-
lowed you to see her messages on Twitter.

This sharing of output from other people on your activity page allows your followers
to dip into the conversation you were seeing and understand the context of one of your

Figure 13-8. Flickr activity page, showing the version with activity for the owner of the account only

238 | Chapter 13: Organizing Your Site for Navigation, Search, and Activity

comments. This collection of tweets is unique to every person and will show you private
tweets from the people who you follow, as each view of these communities is unique,
too. However, it is a great way to follow up on the conversations that other people are
engaged in. (Note that as of this writing, this feature has been removed to help resolve
some of the performance issues associated with generating all of these unique views.
We will look at the caching and scaling issues these kinds of features generate in Chap-
ter 16.)

Activity pages allow a person to see what her friends are doing on the site, what other
people are saying about her stuff, and what people are saying to them via replies. Sep-
arating out these three different strands of content gives a person a choice in how she
interacts with the site. The activity page will be a difficult page to get right, as there are
many ways to implement it. You should expect to revisit this page every few months
as your site grows and your community behavior changes.

Allowing for Content Initiation Versus Content Follow-Up
You can draw a distinction between the initiation of new content and a response to
existing content. During the life of your social application, the relative value of these
two activities will vary. In an application’s early deployment, it is important to bring a
group of people together; later it can be important to provide new content in which to
engage these groups. Response-based content is important, but if the large number of
responses drowns out the smaller amount of new content, it can be difficult for people
to expand the scope of the site. A high volume of content from a small group of friends
and early adopters can seem like a success, but it is important to continually bring in

Figure 13-9. Nature Network snapshot page

Filtering Activity Lists and the Past | 239

and encourage new people. Conversely, too much new content can make the site feel
empty and quiet. Retaining a flexible approach to feature development and the ability
to change will make it easier to find the right balance.

Providing for Email Updates
Allowing people to get updates via email from others they know on your site as well as
from your company is an important feature. The most important aspect of this is to
ensure that the recipient of the email has complete and obvious control over whether
she is sent that email. This is not only a privacy matter, but also a matter of simply
being respectful of people’s time. No one wants to deal with reading and deleting un-
wanted messages. The legal position in your country may also restrict your ability to
send email to individuals. Remembering that a person’s email address is not your
property and that you do not have the right to send email to that address will keep you
on the right side of the law.

Figure 13-10. Dopplr journal page, with some content made anonymous

240 | Chapter 13: Organizing Your Site for Navigation, Search, and Activity

Email updates should be meaningful, appropriate, and timely. That’s simple to say, but
tough to implement well. On any site there are several types of content you will want
to send by email, from new content posted on the site, to replies to items, to the inevi-
table follower requests. Some of these updates should be sent in near-real time, while
others can be sent as daily or weekly summaries. Often, these updates are all sent in
real time, because it is the easiest case to write software to support. The single daily
journal type of update used by Dopplr and FriendFeed works well, though the Friend-
Feed update email can become huge. The daily journal update can still be preferable
to receiving everything hourly or in real time.

A practice that is not helpful, but unfortunately is very widespread, is the “X sent you
a message, click here to see it” pattern. The intention in this case is that the reader will
click the link in the email to see the update, which will bring the reader back onto the
site and he will then explore the rest of the site. I believe this irritates more people than
it brings back to the site. If you are using this pattern, consider how you would react
to a voicemail from me saying, “Hi, give me a call, thanks Gavin,” rather than a real
message. Given the current shifts to tools such as the iPhone and email on mobile
devices, it is better to send the entire message and gain the additional traffic through
better communication.

Creating RSS Feeds
RSS feeds should be simple to create from any page. Essentially, they should be a mirror
of the content on the page. If you are struggling to determine what content should go
into an RSS feed, it is a good indication that you have a page that is trying to solve too
many problems. In early mockups of the activity page feature on Nature Network, a
single page provided both the replies directed to you and the updates from the com-
munity. When creating the RSS feed, we realized that deciding how to segment the
information for the feed was not the issue. Rather, separating the types of content on
the page into multiple pages was the issue. As a result, generating an RSS feed that
represents a composite view of activity on the site for a person is now common practice.
A decision-making site that explores collective intelligence ideas generates a single RSS
feed for all activity on the site relevant to that person.

RSS has become an expected feature on the new “Web 2.0” website, so making these
feeds simple to create is essential. Why? It is nearly impossible to determine what people
will want to follow on your site. For instance, they might be interested in a tag or a
person or the replies to a particular topic. So, simplifying the process to create an RSS
feed allows for greater flexibility when reacting to the dynamic interests of the visitors
to your site.

Some RSS feeds contain private information. Ensuring that this stays private requires
some thought. A traditional username and password approach can work here, but it
makes the feeds much harder to work with. The username and password need to be
set or entered to access them by the user on RSS reading applications or sites. A more

Filtering Activity Lists and the Past | 241

common approach is to generate a random string for the URL and obfuscate the access
method. For instance, a URL such as /profile/matt/updates.rss would be easy to guess,
whereas /profile/od4qubd5avdxzl5lgbf6h.rss is impossible to guess, but also easy to cut
and paste into an RSS reader. The privacy is then up to the individual; he needs to
ensure that the URL does not appear in a public space, because that will give anyone
access to his private information.

Who Stole My Home Page?
When designing a new web application, most people are tempted to start with the home
page. Quickly, though, you will realize that once a person has an account, the type of
content that is appropriate for the home page changes. You have a decision to make:
do you keep a valid home page for your members, or do you make the home page
become their page?

On Flickr, Dopplr, and other sites, you can no longer access the normal home page
once you have an account, as you are automatically sent to your profile page instead.
Often, though, there is a necessity to show content other than your own or that from
your social network. To solve this problem, Flickr has created a section for its site,
called Explore, which provides a means of browsing interesting content on the site. On
the Dopplr site, meanwhile, given its focus on private relationships, aggregate trips are
not public, so there is no shared public experience. In this case, information about cities
surfaces when you add a trip to a new place, and these city pages act as focal points on
the site, much in the same way a traditional home page might.

Many sites opt for the “replace the home page” pattern, but sometimes it makes sense
to keep a home page as a separate entity. Nature Network kept its home page, because
it offers a place to show content outside a person’s set of contacts (also known as the
local graph of the person’s social network). It also offers a space to show content from
editorial teams. Mixing editorial and social content on the same site is not that common.
Nature Network has editorial content for each of the hubs on the site. By not replacing
the home page, it provides an obvious place for people to go to find out what else is
happening on the site. Instead of making the member’s home page the same URL as
the site’s home page, Nature Network opted for a unique url/me, which delivers per-
sonal content to every person.

Regardless of how you choose to map the content on your site, you still need to offer
two home pages: the personal home page and the general home page. As noted earlier,
the personal page is where people get other users’ updates. The general home page is
where you find out about interesting stuff people outside your immediate social net-
work are sharing.

The default home page for non-members of your site needs to draw people in and
encourage them to sign up. In some cases, such as Digg or Delicious, the home page
acts as the list for popular content, too. The main purpose of the default page is arguably

242 | Chapter 13: Organizing Your Site for Navigation, Search, and Activity

advertising; some designs promote this heavily with the equivalent of a big arrow
pointing to the sign-up box. In many cases, the aim is to clearly and succinctly explain
what your site does and why people should sign up.

Finally, you may want to have a place to discuss what you are doing to the site. Running
your own blog about your product gives you a place to talk about new features and
interesting activity. All the sites mentioned in this chapter run a blog at
blog.domain.com, often hosted with a separate company (frequently, WordPress or
Tumblr). Running the blog separately means you have a place to notify your users when
the site will come back up if you are offline for a time or in case of other problems.

Providing for Site Navigation
You will need to provide navigation to other sections of your site, too. You can’t rely
only on context-led page navigation. Typically, social applications have a horizontal
navigation bar at the top of the page, providing key navigation. Often, there is a deep
navigation map at the base of the page. Placing frequently used navigation buttons at
the top of the page and less used tools at the bottom leaves more space at the top of
the page for content. In addition, removing the typical lefthand navigation bar shifts
the emphasis from the navigation and branding to the content from the people on the
site. We read English from left to right, so a page layout with a navigation menu on the
left and ads or other content on the right can give the community content a slightly
hemmed-in feeling.

The rise of blogging in the past five years has promoted experimentation in designing
clear, simple navigational structures for site. Blogs tend to focus on a time- and category-
based design with a clear link to a simple underlying URL structure. There is much to
learn from this work. Clearly indicating the content that is core to your site and showing
the tools to manage this content is important. Your site navigation needs to be thought
through entirely from the point of view of the people using the site. This might seem
obvious, but once inside a project, it is easy to lose site of that point and pay attention
to the impulse behind “that awesome feature that took months, which has to be in-
cluded in the navigation.”

The three examples shown in Figure 13-11 demonstrate the following common navi-
gational layouts for websites:

Traditional website
The standard layout has a branding space at the top, content navigation on the left,
ad space on the right, and the copyright on the bottom. This layout is very common
on many content and product-led websites.

Blog
The content is usually prominent on the left, with the navigation and ads on the
right. The footer is used for copyright and some navigation.

Providing for Site Navigation | 243

Social application
A social network site has the key navigation at the top, alongside some branding.
At the bottom of the page is deeper site navigation. (Many blogs use this pattern,
too.) It is also used on sites such as Apple.com. Today, pages can be quite long
because, unlike during the infancy of websites, people are willing to scroll web
pages. Amazon pages, for instance, are typically 8,000 pixels or more deep, and
people happily scroll to the customer reviews at the bottom of the page (see De-
signing for the Social Web [New Riders], by Joshua Porter for more on this topic).

Finding a space for advertisements in the middle of the design can be a challenge.
If this is the pattern you want to follow for your business model, consider adding
advertisements on the right; the popular skyscraper format works well in that
regard.

Figure 13-11 shows these three typical layouts.

Figure 13-11. Screen areas for navigation branding and advertising versus actual content

Visually distinguishing the areas to which you can navigate is also important. High-
lighting the different sections of a site is typically done via tabs. Frequently, there are
two levels of tabs: one top-level set of tabs for the core sections and another set tied to
the page content. Many sites also add JavaScript-based drop-down menus that offer
options related to the main section. See the Flickr example in Figure 13-12 and the
Vimeo example in Figure 13-13 for implementation of such elements.

Figure 13-12. Flickr menu structure, which uses drop-down menus on the top menu with triangles to
show the presence of the menu; the links under “Your photostream” are simple links

244 | Chapter 13: Organizing Your Site for Navigation, Search, and Activity

http://apple.com

Figure 13-13. Vimeo menu structure, in which the drop-down menus are automated by a mouse
rollover on the upper menu; the lower set of tabs is simple links

Tabs have had a mixed history in terms of usability, largely coming from double-layered
tabs common in older Microsoft applications. They can be frustrating to use, as the tab
ordering changes when you click on a rear tab. As you can see in Figure 13-14, using a
closely placed double set of tabs makes it unclear which tab relates to the panel
contents.

Figure 13-14. The double tab layer from Microsoft Word 98, taken from http://www.atpm.com/4.06/
page8.shtml by Michael Tsai (used with permission)

If they are made visually distinctive, however, tabs can be an effective interface on the
Web. A clear visual hierarchy will help people locate which section of the site and
subsection they are looking at. Both the Flickr and Vimeo sites, for instance, use white-
space to separate the tab blocks and then position each menu bar close to the relevant
content. Making sure your navigation system is easy to use is important.

Site footers are a good place to offer a comprehensive set of navigational links. These
are increasingly replacing the sitemap page. Usually these footers group sets of pages
according to themes, such as a personal page, site help, developer tools, or general
information about the company. Figure 13-15 shows the site footer for Last.fm.

Creating Page Titles
The <title> tag in HTML is often forgotten when designing a page. This tag rarely
appears on page mockups. This lack of thought can lead to every page simply bearing
your site’s title, rather than a meaningful page title. These titles are important because
they are what a search engine will display as the main entry on a search results page.

Providing for Site Navigation | 245

http://www.atpm.com/4.06/page8.shtml
http://www.atpm.com/4.06/page8.shtml

The format of the titles, and what these titles should comprise, can take several forms.
Let’s look at a few:

Company—section—subsection—article title
This used to be a very common pattern, but it means you have to read all the way
to the end of the title to find out what the article is about. Also, a browser might
truncate the end of the title.

Article title—subsection—section—company
Reversing the previous format is another approach, but this means it can be hard
for people to find your content in a menu of open windows.

Company—article title in subsection—section
A better compromise, which is gaining popularity, is to place the company name
at the beginning of the title and then put the most relevant piece of information
next.

Nature Network took a very person-centric approach to this issue by displaying, for
example, “Gavin Bell’s profile on Nature Network” or “Constructing a complete model
of consciousness from Brain Physiology, Cognition and Consciousness forum on
Nature Network.” This sentence-like structure for titles is a change from the punctu-
ation characters, often used as separators on many sites. (This is probably an interna-
tionalization headache in hindsight, given the complexity of prepositions in Italian and
other languages.)

The goal for a page title is twofold. First, it needs to be easy to locate on a web browser
menu, so it should be short and informative, with the site name on the left. Probably
more important is the fact that it is the label for a page on a search engine, so the leftmost
place is where you will want to have the unique content-led information. Short product
names are very helpful, as you can have both the product name and the content on the
left. The key message is to drop the internal levels—for example, photo title on Flickr
and artist on Last.fm.

Figure 13-15. Site footer for Last.fm

246 | Chapter 13: Organizing Your Site for Navigation, Search, and Activity

Summary
A site requires some navigation structure to allow people to find their way around the
content. On a social application, much of this navigation will come from your com-
munity. They will create the content, tag it, and generate the conversation around it.
Your job is to create a simple structure that can hold this content and support the
ongoing community interaction around it. Capabilities to search for people and tag
content are important in initiating these conversations. The role of the activity page is
to provide the heartbeat of the site for an individual because she will discover her social
interactions with others through this page. It is important that activity pages are not
seen only as web pages. Notification can be through an email or RSS feed, connecting
the person back to her community.

Summary | 247

CHAPTER 14

Making Connections

You are in the midst of planning your shiny new community or social network site, and
you’ve got your social objects all laid out. It’s time to look past the objects, and ask
what binds your community together.

Social contact is a strong way to bring people together; letting people form relationships
online is a natural extension of how we behave in face-to-face communications. How-
ever, when we are on the Internet, we need to be more explicit in how we denote these
relationships. We end up with a more formal identification of relationships than hap-
pens face to face. Online relationships are either present or not present. Face-to-face
relationships can be more fluid, changing over time.

Virtually every social software application allows you to create online relationships by
marking someone as a contact and adding him to your social network for that website.
The language might vary slightly, and there are different types of relationships that you
can create, but the basic concept of a list of people who you have an identifiable rela-
tionship with is valid. Chapter 13 touched on how a profile page should include links
to support adding people to your network to create the connections for your relation-
ships. It’s time to start building those links.

Choosing the Correct Relationship Model for Your Social
Application
You need to determine how social relationships are formed for your site. There are
several different ways you can let this occur, and the one you choose will depend on
the nature of your audience. The simplest and most common model, suitable for most
kinds of social networks, is the add and notify model. Adding a person to your network
lets you follow his updates on your update page. The person is sent an email saying
that you have added him to your network of contacts. Table 14-1 shows some rela-
tionship models, a description of how they work, and examples of sites that use them.

249

Table 14-1. Social online relationship models

Model Description Examples

Add and notify, also known as asymmetric follow Everyone is free to add anyone to their net-
work. Notifications are sent informing them
of the addition.

Flickr, Twitter, and
most social networks

Add and confirm Each request must be approved. The person
who is to be added to the requester’s network
needs to agree to be added.

Not very widely used;
suitable for very for-
mal applications

Add, confirm, and link back, also known as symmetric
follow

This is a formal approach. It is a two-way ad-
dition: on confirmation, the requester is
added to the requested person’s network, and
the requested person is added to the reques-
ter’s network.

LinkedIn, Facebook

The first model, commonly known as asymmetric follow, is far and away the dominant
one for social applications. The number of followers and the number of people a person
follows do not need to be symmetric. If you are unsure which model to choose, consider
the add and notify model. It is lightweight to implement, and easy for users to under-
stand. Importantly, there are differences for the teenage market; here, a full two-way
symmetric approach is recommended. This way, the teenagers have a clear idea of who
they are interacting with and have given each person explicit permission to interact
with them.

A more symmetrical model can be effective, as exemplified by the success of this type
of model on both LinkedIn and Facebook. If the expected size of your social network
per person is likely to be in the low hundreds, the symmetric model is a good one. If
you want to allow for tens or hundreds of thousands of followers, as Twitter does,
making the relationship confirmation-based and/or reciprocal will not work.

Not every site is like Twitter. Examine the needs of your community and subject area
to see how their current relationships operate and what your social object requires for
interaction.

The add and notify model describes only the simple relationship between two people,
but many sites offer a means to make some relationships more important than others.
A notification step is important on sites where there is a degree of value in the link
between two people. If it enables something or allows access to a new means of com-
munication, a confirmation stage may be required. If Twitter had, for example, set the
ability to send a direct message as a capability of following, it would likely require a
confirmation step. As it stands now on Twitter, following allows the person you are
following to send you a message. The notification step is also a chance for the recipient
to say no to the request, by blocking the addition.

Often, these two levels of a relationship are known as friend and contact. I suggest that
two levels are enough to handle virtually every situation. If you want to offer more

250 | Chapter 14: Making Connections

control, you should look at groups, which I will cover in “Administering
Groups” on page 264. Two levels allow you to differentiate between people who are
close friends and people who are acquaintances. This distinction is important for cer-
tain kinds of content, such as photos of your children you might not wish to share with
everybody. While there are only two levels of explicit relationship, there is often a third,
implicit group comprising the people who are not logged in to the site. Allowing two
levels of relationship means there are five states of visibility in which an item of content
can exist, as shown in Table 14-2.

Table 14-2. Content visibility based on two-level relationships

State Visibility Notes

Private Visible only to the creator Useful for drafts

Friends Visible only to friends of the creator Common for personal content

Friends and
contacts

Visible to friends and contacts Common for people who wish some level of privacy for
all content

Anyone whose net-
work I’m in (fans)

Visible to the creator’s friends and contacts,
plus anyone who has the creator in her social
network

Allows content to be displayed just to members of the
site who the creator has a personal contact with; not
widely used

Everyone Visible to anyone on the Internet who looks at
the site

Can be limited to anyone who can access the site, by
requiring a site login

A social application can set expectations for who you will connect with. For a dating
site, this will be (almost) exclusively people you do not know. On most social networks,
it tends to be people you know or have met. On Flickr, it might also be people whose
photography you like. For Dopplr, the expectation is that you have some sort of work-
ing or personal relationship with the person with whom you are connecting. Making a
decision early on as to who will connect and their expectations is an important aspect
in application design.

Nature Network uses a simple add and notify model. We could have gone for a more
controlled model, allowing only mutual two-way relationships, but we felt this would
make senior scientists less likely to join and make those who are less senior unlikely to
request to follow leading scientists. We could have extended the fan-based model, where
the relationship is one-way, and created more notification tools supporting broadcast
of publication or content to groups of people, but we respect the privacy of our pro-
fessional scientists and don’t want to allow others to intrude on their time unduly.
Focus groups didn’t show great interest in being obligated to follow dozens of other
scientists as part of a two-way symmetric pattern.

Some social software services attract people who gain thousands of followers. Some of
these people are already famous and use the services as a broadcast device. Some of
them do engage in conversation, while others just follow back a small subset of their
followers. They will cause you scaling problems, but they are not a concern otherwise.
Famous people tend to have many more followers than they follow.

Choosing the Correct Relationship Model for Your Social Application | 251

Creating the Language of Connections
The language that describes the process of adding relationships can be tricky to get
right. The most basic version of it is as follows. You can alter the following words to
suit the kind of site that you have, but these basic relationships and actions are a fun-
damental part of how social applications work:

Add
Makes the person part of your social network, and can be subject to confirmation.

Friend
Confers a special level of relationship and allows certain privileges for the person
as to the content he can see or activities he can perform.

Contact
Describes a person in a social network with a normal level of relationship.

Fan
Describes the person who has a one-way relationship to a person on a social net-
work. John is a fan of Mary; Mary has no relationship with John.

Follow
Describes what happens after the person is added. John follows Mary on that social
network. This can be one-way or two-way: if Mary added John, they would follow
one another.

Block
Ends the ability of someone to follow you; this can sometimes be reversed.

Blocking Relationships
Sadly, it is also necessary to provide tools to allow the ending of relationships. There
are a variety of reasons why someone would want to do this, but some of the most
common are spam and an unpleasant interaction. This capability is more common on
sites where commenting on the content created by individuals is the main activity. A
good example of this is Flickr. Blocking removes a person from your social network
and stops her from being able to add you back to her network. In the case of Flickr, it
also removes any comments the person has left and removes any of your photos from
her favorites list. Essentially, you vanish from the site in terms of that person’s profile.
This practice is not foolproof, because the blocked person can create a new account,
but it is an effective tool. Chapter 15 covers the challenges of dealing with bad behavior
in “Extreme Measures: Banning Users and Removing Posts” on page 280, but let me
leave you with the shortest guideline for good behavior. It comes from Flickr’s Heather
Champ, and it sums up a lot of the issues in dealing with people who are behaving
badly: “Don’t be that guy, you know that guy.”

Another group comprises spammers. Generally, spammers do not engage in conver-
sation; they simply add contact after contact hoping to promote the URLs they are
entering on the site. This happens on most sites, from Flickr to Twitter to Digg, and so

252 | Chapter 14: Making Connections

on. Usually, you can separate the genuinely high-volume people from the spammers
by looking at the follower-to-fan ratio. Spammers generally follow many, many more
people than follow them. Looking at the block functionality will also highlight these
people to you as they will be blocked by a large number of your members. Building
good administration systems to notify you when you have new spammers is important
for maintaining the health of your community.

Information Brokers
A recent trend in social web applications has been to drop the classification of contacts
as a friend or a contact. The focus of Dopplr, for example, is on sharing trips. This
sharing of information rather than rating of a relationship between two people allows
Dopplr to step back slightly and take an information-broker-based relationship rather
than one focused on getting people to visit the website for dopplr.com. Visitors may not
be interested in Dopplr per se but in where a certain person is going. Arguably, Twitter
is doing the same, but less explicitly. In each case, there is no huge call to visit the
website, and the majority of regularly used functionality is available via an API. This
change in emphasis from actually visiting the website to being able to effectively use
the site via other tools and programs means the functionality of Dopplr needs to work
when removed from the supporting context of the website. The emphasis shifts to the
information that Dopplr can provide rather than a specific web-based user interface
element.

The location-sharing application Fire Eagle will take updates from you as to your
whereabouts and will release this to approved client applications. The carbon-tracking
system AMEE will take values corresponding to energy usage and can release this in-
formation to approved clients. These are two more extreme examples of this trend.
They both dispense with the social network entirely, relying on providing a high-quality
data service to other social web applications. Think about whether the product you are
planning can work in this manner. Information broker applications such as these are
going to be a fascinating area to watch over the next few years. Moving from a person-
centric view of a social application to one that includes software as well as people will
allow for more varieties of integration between social applications.

Notifications and Invitations
Generally, it is a good idea to send email when a relationship is created. If you have a
confirmation model, this is obligatory; however, a change of status (from contact to
friend) generally does not merit another email.

Social networks have something of a tell no bad news culture. It is very uncommon to
receive an email saying that someone removed you from his social network. I do not
know how this behavior became common practice, but it seems to be a good one to
stick with. However, it can lead to unfulfilled expectations. For example, say, Kevin

Notifications and Invitations | 253

http://dopplr.com
http://www.amee.com

gets an email saying that famous actor MattD is following him. Later that week MattD
drops Kevin as a contact and so Kevin’s chatter on the social network loosely aimed at
MattD goes unheard and Kevin is disappointed that MattD never replies. Is the silence
better than Kevin receiving an email saying MattD has dropped him?

Invites and Add As Follower Requests
In general, a service will notify a person that there is an invite or an add as follower
request for him. Usually, these invites don’t expire. If you have an add and notify sys-
tem, the inviter will automatically get the updates from the invitee on his update pages.
If you have a confirmation-based system, the recipient must confirm the request.

An example invitation email follows. Ideally, you can make this conditional so that it
changes depending on whether the invitee is reciprocating and adding the inviter. You
might not want to include all the elements in the example, but a link to the person’s
profile and one to the Add link are important.

From: ScreenNameB via ServiceName <servicename@servicename.com>

Subject: [servicename] ScreenNameB is following you.

Hello <ScreenNameA>

ScreenNameB added you; you might want to reciprocate.

OR

ScreenNameB added you in return; you are both connected.

Perhaps ScreenNameB already knows you or just wants to follow your updates. You
can reciprocate if you like.

This is their profile: http://...

This is their content: http://...

These are their contacts: http://...

If you have a confirmation-based system, you will need the following lines, too.

Click this link to add them to your network: http://...

Adding ScreenNameB means that they will automatically be able to see your updates.

Manage this notification using this link: http://...

Thanks,

Service Name - http://serviceName.com

Disclaimer

254 | Chapter 14: Making Connections

mailto:servicename@servicename.com

Given the potential for abuse by spammers, you need to think carefully about whether
to allow the initial add-as-a-contact message to contain anything personal, certainly
think about whether to include any content they have directly provided, even a link to
another site. Many networks, such as LinkedIn, Facebook, and Nature Network, do
allow a message to be sent. Others, such as SlideShare, Flickr, and Twitter, do not. If
you do allow a message to be sent along with the invite, make sure there is a simple
process to complain about the message content, should it be spam.

Links in email should never do something automatically when clicked.
A link such as http://network.nature.com/friendships/new/aa1024
should always go to a web page with a POST-based confirmation but-
ton. Tools such as the Google Web Accelerator will automatically follow
all links in an email, and as much email is read using webmail interfaces
such as Gmail, this can lead to unintended results. However, the Google
Web Accelerator will not follow POST-based web form links.

Secure and Personal Invites
Security is a huge consideration; only the invitee should be able to access the link to an
invite. You should not store the email address of the invited person. You can, however,
store an encrypted hash of the address to which the invitation was sent so that you can
determine whether the person is creating the account with the right email address.

It can be beneficial to allow multiple email addresses to be associated with a single
account on your system. You will need to allow people to change their email addresses,
and allow them to have more than one active email address for an account. For example,
Simon invites Sarah to join ServiceB via her work email address. Sarah has already
signed up for ServiceB, but using her personal email address. If you allow multiple email
addresses to be associated, Sarah can associate her work email address as a non-primary
address with ServiceB and accept Simon’s invite.

Pending Invites
One area that gets poor attention in social application design is the period after an invite
has been sent, but before it is accepted. Too many systems rely on email messages as
the sole token of the invite; there is no reminder or memory on the website. Once an
invite has been sent, there should be two places to find it. The first is a page that is part
of the sender’s profile for sent invites, each invite showing its acceptance status. On
the recipients’ page there should also be an element of their profile page showing un-
processed invites so that they can return to process invites after receiving them. Both
LinkedIn and Facebook support this kind of reminding functionality well. However,
all sites where there is a conditional aspect to invites should offer a history for in-
vites.LinkedIn and Facebook support this kind of reminding functionality well. How-
ever, all sites where there is a conditional aspect to invites should offer a history for
invites.

Notifications and Invitations | 255

http://network.nature.com/friendships/new/aa1024
http://webaccelerator.google.com/

Spam
What counts as spam from your own service and what does not can be confusing to
define as a best practice. Generally, if someone has signed up for a service, it is OK to
send her emails connected with her use of the service. Sending her emails announcing
a new service from your company is probably not OK, unless you obtained permission
to do so. Sending emails about other companies in your group or third parties is defi-
nitely not recommended unless you have obtained an opt-in declaration from your
members. The exact legal position in your country may impose additional
requirements.

So, sending weekly updates, occasional reminders about your service, contact addi-
tions, and similar emails is okay, but make sure you offer your members the means to
stop these emails. The email address belongs to them, so they should be able to control
what arrives in their inbox from your company.

Social Network Portability
The following question came from the early adopters of the Web, the kinds of people
who try out several new web applications every month: “Because I have already estab-
lished who I know and like, can I please just tell you who they are in one action?”

If you are creating a new website, you will want it to grow quickly, and one great way
to do that is to allow your members to import all of their existing friends at once. If
your potential new members must re-create their friends list inside your new applica-
tion, they will quickly become tired of the process. This concept of moving your friends
around as an entity came about in 2007 under various titles. Social graph, social network
portability, and contact importing all referred to largely the same thing.

Each person’s social network added to your pot can mean more people on your site;
making it easy for people to bring their friends to you is a good thing.

Social Graph
Social graph is a term that emerged in 2007 (see Brad Fitzpatrick’s article at http://
bradfitz.com/social-graph-problem/) to describe the set of friends and contacts that a
person has across multiple websites. The mathematical term graph describes the
broader relationships as opposed to the term network that had come to mean a set of
relationships on a single site. It is a useful concept, but it can be misinterpreted if taken
too simplistically. It does not mean you will want to import a single address book of
people onto every site you visit. It is finer-grained than that. Rather, a site you are joining
should be able to query a list of preexisting friends and tell you which of these people
are already members of the new site. Google produced a Social Graph API product
(http://code.google.com/apis/socialgraph/) for this purpose, which allows an application

256 | Chapter 14: Making Connections

http://bradfitz.com/social-graph-problem/
http://bradfitz.com/social-graph-problem/
http://code.google.com/apis/socialgraph/

to query who is already connected to a person and produce a set of people who might
be relevant to her.

The Future of Online Identity
I gave a talk titled “What is your provenance?” about the wider area of what being
connected on the Internet means. The first time, I gave it at the XTech conference in
May 2007. Subsequently, I gave the same talk at Google and it is available on Google
Video. The talk—and Brad Fitzpatrick’s article at http://bradfitz.com/social-graph-prob
lem/—give an overview of what a connected online identity will mean in the future.
The work of Chris Messina, Kevin Marks, and others on the Open Social stack con-
sisting of OpenID, OAuth, Portable Contacts, and Activity Streams is bringing this into
reality. See Chapters 16 and 17 for more discussion on these areas.

Importing Friends by the Book
The main advantage that social network portability gives is to make the process of
adding new people to a new application much easier. There are three main techniques
for importing: scanning for microformatted content using the hCard and XFN rel="me"
formats, querying an API for a person’s contacts, and requesting webmail address book
contacts. The last of these is the most widespread, and in later 2007 and early 2008, it
was widely deployed using the “give me your password” antipattern. (An antipattern
is a negative pattern, a common way of doing something that implements something
in a poor or harmful way.)

Microformats turn human-readable information into something a computer can parse.
hCard is a standard representation of business-card-like contact details. XFN is the
cumbersomely named XHTML Friends Network, which is a means of marking up a
list of people in terms of your relationship with them. The rel="me" version defines the
author of the page and the items he owns (see http://microformats.org for more
information).

Matt Biddulph from Dopplr has been implementing non-password-based mechanisms
to access webmail address books and similar tools (see http://code.google.com/p/identity
-matcher/). His plug-in—written as a gem module in the scripting language Ruby—
contains the code to access Gmail, Windows Live, and Twitter, as well as make hCard-
based queries, all without having to enter the password for the webmail provider on
the requesting site (which is the heart of the antipattern). Biddulph has encapsulated
the details of making the address book requests so that as a developer you simply need
to ask which service the person uses and you get back a list of contacts.

Address books have been hard-to-access data objects on the Internet. Each application
offers a different way to manage contacts, but importing them became much easier in
2008. Now, Yahoo!, AOL, Google, and Microsoft all offer a means to import an address
book stored on these email systems. The Portable Contacts, based on open public

Social Network Portability | 257

http://video.google.com/videoplay?docid=-8663100900373306094
http://video.google.com/videoplay?docid=-8663100900373306094
http://bradfitz.com/social-graph-problem/
http://bradfitz.com/social-graph-problem/
http://microformats.org
http://code.google.com/p/identity-matcher/
http://code.google.com/p/identity-matcher/

standards, aims to offer a standard, simple approach to implementing an address book.
It looks like promising (see http://wiki.portablecontacts.net/).

Another good example of using existing accounts to provide contact information is Get
Satisfaction. Its profile creation page encourages you to give the username of an account
on another system. It then simply takes the publicly available details from that site:
location, avatar image, a website URL, and first and last names. The technique mainly
relies on the other sites having implemented an hCard wrapper for these details on a
profile page, because this is simple to do and so common. The elegance lies in that the
technical aspects of hCard, for example, need never be mentioned to the potential new
member. She simply gives her Flickr username and magic seemingly happens. In Fig-
ure 14-1, I entered “gavinbell” in the panel on the right and clicked the “Get flickr
profile” button; my image appeared on the left automatically.

Figure 14-1. Get Satisfaction, showing profile creation using hCard data from existing profiles

This capability makes it easy to move profile information from one place to another,
but it relies on people being trustworthy. It would be trivial to enter someone else’s
Flickr identity and pretend to be him on another service, though this kind of imperso-
nation is perhaps unlikely. Along these lines, monitoring the accesses to your site for
scraping behavior is an important duty. Repeated accesses should really come via a
proper API in which the actual content requested is delivered without the rest of the
screen clutter. The usage can also be tracked to an individual or company with an API.

258 | Chapter 14: Making Connections

http://wiki.portablecontacts.net/

Spamming, Antipatterns, and Phishing
Spamming contact lists is a very rude thing to do. After importing your address book
entries, some sites will then email all of those people on your behalf inviting them to
join the service you just did. A range of companies from Plaxo to Stumbleupon to
Quechup have all fallen foul of this, either intentionally or accidentally. Plaxo did
apologize,* which is the right way to deal with this situation, and it is now actively
working on open web tools. Stumbleupon, on the other hand, confuses users with an
interface that causes people with large address books to inadvertently send everyone
an invite rather than just existing members.†

In September 2007, many articles discussed the wave of unsolicited
email that Quechup sent on behalf of its new users (http://www.oreilly
net.com/xml/blog/2007/09/quechup_another_social_network.html). As
Jennifer Golbeck points out, the ability to retrieve a list of contacts does
not give a company the right to send unsolicited email seemingly on
your behalf. Pete Cashmore notes at http://mashable.com/2007/09/02/
quechup/ that Quechup went wrong when it took users permission to
access their contacts as implicit permission to email those contacts.

If you are going to send emails on behalf of a member, make sure the
member is an active participant on your site first and get his explicit
permission before you send the email. Otherwise, you are spamming.

Importing contacts rarely requires a simple bulk import of everyone from an address
book. For example, say, you have an account on Flickr and you join Cork’d, a site about
wine, it is unlikely that all of your photography friends will be wine drinkers. This is
one of those situations where the content is not owned by your company; it belongs to
the person who imported it. You need the person’s permission each time you use her
information.

A better way to import friends is to let people select who they care about from their
own contact lists. Spokeo, as shown in Figure 14-2, takes a very explicit approach to
getting your contact details. It asks you to use your username and password for your
webmail provider as the mechanism of sign-up, and asks its potential users to give up
the password for their email to a third-party company. Thus, the password antipattern
continues. Jeremy Keith describes it well at http://adactio.com/journal/1357:

Allowing users to import contact lists from other services is a useful feature. But the
means have to justify the ends. Empowering the user to import data through an authen-
tication layer like OAuth is the correct way to export data. On the other hand, asking
users to input their email address and password from a third-party site like GMail or
Yahoo! Mail is completely unacceptable. Here’s why:

* http://blog.plaxo.com/archives/2006/03/an_apology.html

† http://www.insideview.ie/irisheyes/2008/02/stumbleupon-pro.html

Spamming, Antipatterns, and Phishing | 259

http://www.oreillynet.com/xml/blog/2007/09/quechup_another_social_network.html
http://www.oreillynet.com/xml/blog/2007/09/quechup_another_social_network.html
http://mashable.com/2007/09/02/quechup/
http://mashable.com/2007/09/02/quechup/
http://adactio.com/journal/1357
http://blog.plaxo.com/archives/2006/03/an_apology.html
http://www.insideview.ie/irisheyes/2008/02/stumbleupon-pro.html

It teaches people how to be phished.

I don’t know how much clearer I can make this: the end result of exporting data is de-
sirable; teaching users to hand over their passwords to any site that asks for them is not.
There is no excuse for asking for a third-party password on your website. You’re doing
it wrong. That authentication must happen on the third-party site.

Figure 14-2. Spokeo implementing the password antipattern

Webmail address books are too tempting a place for some people; they feel they can
use them for their own marketing purposes. As Jeremy Keith notes, this encourages
phishing (http://en.wikipedia.org/wiki/Phishing). You are being phished when you enter
your personal details on a site that pretends to be the proper site or pretends to act on
behalf of the proper site. Commonly associated with fake emails from PayPal or a bank,
clicking on a link in these fake emails takes you to a site where you enter your actual
account details. The criminals behind the operation then use your details to empty your
account.

Address Books, the OAuth Way
You should require that a user only enter his password for an account on the site for
which he created it. By checking the URL in the address bar in his browser, a person
who thinks he’s entering, for instance, his Twitter password on the Twitter site can
confirm that the site really is twitter.com. If the user has a Gmail account, he should
only enter the password for it on the Gmail interface.

Token-based authentication systems such as OAuth provide a mechanism for third-
party data access, letting you work from a single login while avoiding a basic problem.

260 | Chapter 14: Making Connections

http://en.wikipedia.org/wiki/Phishing
http://twitter.com

In the case of Gmail, for instance, giving a third-party company your Google account
details (password) lets the company access any of the other services you have on Google.
In fact, this has actually been used as a potential hack (for more information, see http:
//www.codinghorror.com/blog/archives/001072.html).

OAuth implementations are becoming more common. For instance, FriendFeed re-
cently implemented OAuth-based sign-up using Twitter as the address book provider.
The user experience flow starts on the FriendFeed site, shown in Figure 14-3. Clicking
the Twitter button, shown in Figure 14-3, takes you to a login page on the Twitter site,
shown in Figure 14-4. Once you enter your username and password there, you are
presented with an authentication page, as shown in Figure 14-5, where you grant
FriendFeed access to the data associated with the Twitter account with which you have
just logged in. Clicking Allow takes you back to the FriendFeed site and its normal
account creation page, but with the data from Twitter already available, such as con-
tacts and user profile information. All the authentication and approval happens on the
Twitter site, not the FriendFeed site.

Figure 14-3. FriendFeed account creation via Twitter

Figure 14-4. Twitter sign-in for FriendFeed account creation

Address Books, the OAuth Way | 261

http://www.codinghorror.com/blog/archives/001072.html
http://www.codinghorror.com/blog/archives/001072.html

Creating a Common Social Stack for the Web
Social network portability is a fast-moving topic. At the time of this writing, in May
2009, there has been some great activity in the release of password-less but authenti-
cated access to address books held by major webmail providers. However, more pro-
gress is to come in this area. OAuth provides a simple means of accessing third-party
data, but it is not yet the accepted standard. That standard is coming with Portable
Contacts.

A block of useful social technologies is being developed out in the open: OpenID,
OAuth, microformats, and Portable Contacts. XRDS is another one of these technol-
ogies (http://www.hueniverse.com/hueniverse/2008/07/beginners-guide.html). Designed
to support resource discovery, XRDS allows services to interoperate in a more auto-
matic fashion, because these XRDS profiles act as a simple mechanism for determining
what each service offers. Service discovery is obvious on a single application; XRDS
defines how two different services can handle access control, for example.

Activity Streams is one of the newest technologies, and it is aimed at allowing easy
exchange of activity event streams between different social applications; http://activity
strea.ms/ hosts the evolving specification.

Adoption and understanding of technologies such as OpenID and OAuth is progressing
in the developer community. The OAuth-based flow was not possible in early 2008—
a year later and it is possible. The general Internet population is very familiar with the
idea that identity means an email address and a password. Using URLs to represent
people as OpenID does, or giving data access to one site on another site, will take longer.
However, OpenID and OAuth are the best mechanisms for providing common identity
and access to data between multiple applications.

Ideally, you should never ask for a password for a service you do not control. Put
pressure on the other service provider to implement OAuth, and you can get the data
with a clean conscience.

Figure 14-5. Granting FriendFeed access to the data associated with the Twitter idsix account

262 | Chapter 14: Making Connections

http://www.hueniverse.com/hueniverse/2008/07/beginners-guide.html
http://activitystrea.ms/
http://activitystrea.ms/

Changing Relationships over Time
Our social network changes over time. We make new friends, we change jobs, we move,
etc. All of these events change who we care about and who is physically close to us.
However, social applications do not efficiently handle these changes; there is no ability
to forget in this digital world. People who have large contact lists are likely to have
people on them who they have forgotten they added, or no longer have enough of a
context to remember why they added them. The networks in our social applications
are only capable of growing, it seems, and they are binary in nature: relationships are
either present or not. This area offers a lot to explore, particularly as people often
complain about how much content they are presented with.

To help prune all of this, applications could show the people you look at a lot, or the
people who update a lot and you skip over. By analyzing consumption behavior over
time, it should be possible to identify those people who you are less interested in and
suggest these accounts for pruning. However, we tend to not offer these tools for fear
of offending. A small step in the right direction comes from the Mac OS X desktop RSS
news reader, NetNewsWire, which has a Dinosaurs feature (shown in Figure 14-6) for
detecting feeds that have not been updated in a set time period. Filtering tools such as
one this are becoming essential in managing user experiences on the Web; they help
us to determine which content to pay attention to.

Figure 14-6. NetNewsWire Dinosaurs feature showing feeds that have not been updated recently;
social applications should consider features such as this to help with filtering and management

Changing Relationships over Time | 263

Administering Groups
A common request within social applications is to create some form of group to let
people self-associate in a smaller throng than the entire site. Creating groups is generally
a good idea, but it does increase the complexity of your product in ways that are easy
to underestimate. Adding groups means there are now some potentially semiprivate
areas on your site. Certainly, there are now areas where some people have permission
to do some things and other people do not. The other aspect to consider is that it is
something else for people to get invited to join. So, this means more administration for
your members to deal with.

Public or Private?
There are two schools of thought on groups. The dominant one represents groups as
a public entity. The other type of group is a private selection of people created by a
single individual, such as a private email mailing list.

Most groups in social software are of the public type. They are set up by a single indi-
vidual, and they set the criteria for membership. Commonly this will be an open group
that is publicly visible to other people on the site. Other common variants are the public
group with approved membership, and the private invite-based group.

The second type of group is more personal and more recognizable in terms of how we
act in social situations. It is the individually selected group. For example, from the list
of people I know, I select people who I’d like to have in a group I create. Everyone is
automatically a member of this group, but I control who is a member; you can’t apply
to join.

Private types of groups will become more prevalent as the need for semiprivacy on the
Web increases.

The public group (see Figure 14-7) is the dominant social entity for multiple people to
have a shared experience. This experience is one that is separated from the rest of the
activity on the site. It need not be a private group; the activity simply happening in a
different place is enough to separate it from the rest of the site. A close analogy would
be a public bar with a main room and some smaller rooms upstairs; all the rooms are
in the pub, but the rooms upstairs offer a separate experience from the rest of the place.

This dominant position of the public social group is unlikely to change in the near term.
Typically, groups are publicly listed on a website and people are free to join and leave
at will. The tools and content inside the group are often publicly visible too, but usually
for reading only. To contribute to the group, you need to join. This type of group allows
people to find others of a like mind and interact with them. This type of group also acts
as a badge showing an affiliation with a particular subject area or activity, even if the
individual rarely contributes to the group.

264 | Chapter 14: Making Connections

Groups must have a means for members to talk to one another, frequently offered as a
message board. Boards present a flat playing field for all members to participate. Any-
one can initiate a topic, and anyone can respond.

Regulating Group Creation
On some sites, such as Flickr and Nature Network, anyone can create and administer
a group. This approach does entail risks because you are delegating aspects of your site
management to individuals you will probably not know, but it also means the site can
grow faster. There are two main roles in a group: administrator, or owner, and mod-
erator. You can see these roles in action in Figure 14-7. The administrator is defining
the purpose of the group and has four moderators who help to manage the group.

The administrator owns the group, typically setting the title and purpose of the group.
The administrator can also shut down the group and appoint other administrators or

Figure 14-7. Flickr Critique group, a typical public group in a social application

Administering Groups | 265

moderators. Larger groups will want to appoint moderators who can help manage the
conversations and disputes in the group. See Chapter 15 for more details on modera-
tion.

Public groups sometimes encourage a range of odd or less desirable behaviors. Two of
these behaviors are land grabbing and its relative, copycatting. Both behaviors are about
seeing groups as territory. People like to own things, so they will create groups to have
a sense of ownership. Land grabbers will create many groups and will aspire to mark
an area of the subject matter the site covers as theirs. They may do this with good
intentions, but they often overreach and leave dormant groups that they do not have
time to run. Copycats see successful groups and create mimic groups hoping for the
same sort of success. On Flickr, this is a popular activity; dozens of groups are based
on the images people have marked as favorites or ratios of views to favorites.

Early in the life of Nature Network, we had a student identified as a land grabber, who
decided to create dozens of groups covering most areas of science. We had deliberately
not put any blocks in place to stop people from creating lots of groups, but we didn’t
expect one person to create so many groups. We got in touch with him and asked
whether he had meant to create so many groups, then worked with him to find out
which ones he was actually interested in running.

Both land-grabber and copycatting behaviors can lead to multiple groups for a single
subject area. This is not necessarily a bad thing, as many groups will not thrive because
they require more effort than people expect. However, it can lead to confusion for
people who are new to the site and are looking for, say, the Physics group, only to be
presented with 35 groups all claiming to be about physics. For your site, you will find
a happy medium, but you will need tools to manage and observe what is happening;
see Chapter 16 for help with some management tools.

Summary
Relationships and creating connections for them are a key aspect of a social site. There
are several different mechanisms, so you need to choose the most appropriate one for
your audience. Privacy is an important element; being careful to ensure that people
understand what is private is important. A common language is evolving to describe
the terms and concepts for managing relationships, but you need to pick terms that
make sense for your community.

The communication around relationship management generally means lots of emails
being sent. There are good examples to learn from and good practices to follow. In
addition, people are becoming overwhelmed with the amount of email that social web
applications can generate, so we explored the future of social networking portability
and some antipatterns to avoid. Be sure you understand the issues raised by including
groups on your site, particularly the increased complexity and need for communication
tools inside the group.

266 | Chapter 14: Making Connections

CHAPTER 15

Managing Communities

You want your members to have helpful, friendly interactions on your site—an expe-
rience they’ll enjoy and want to have again. Unfortunately, that won’t always happen,
and not necessarily because you built your site incorrectly. The anonymity offered by
the Internet gives some people the liberty to behave badly. Hiding behind a screen name
makes some people feel like they can act with impunity. There are lots of names for the
people who behave badly on the Internet: for instance, spammers, porn and drug mer-
chants, trolls, griefers, and troublemakers. Some of them are trying to sell something,
while others are just out to cause problems.

However, there are some ways to mitigate the worst of these problems, and your com-
munity can help you. Although community management and moderation approaches
deserve a book of their own, this chapter will provide an overview of some of the key
issues.

Social Behavior in the Real World
On most social forums, there are some people you know, some you might have invited,
some you get to know, and a large number you don’t know at all. There are many places
in the real world with the same characteristics. Bars and restaurants, for instance, are
independent commercial endeavors to which you can become a regular visitor, but they
are not someone’s personal home. They have staff members who run the place, and
there are expected modes of interaction. A bar or café is probably the best fit to a
message board or social network because bars and cafés support groups involved in
conversations.

Three broad roles are worth discussing in this regard. For every café or bar, there is an
owner, some staff members, and customers. On a website, there is a host or publisher,
some people who help run the site, and readers who use the site. The important aspect
of a bar is not really the décor or the beer—it is the ambiance. Are people dealt with in
a friendly and attentive manner? Is the place clean and tidy? Are troublemakers dealt
with quietly and discretely? It is based on these interactions that people decide whether

267

they’ll frequent the place, and the social interaction among the customers is shaped by
these interactions. Make the staffing too obvious and people feel uncomfortable; make
the staffing too lax and people will be poorly, served or perhaps hassled by someone
they did not come to meet.

Like most analogies, this one falls apart if you push it too far (e.g., what is the “beer”
that is being sold on most message boards?). However, the social framework of both
places is similar. The role of the staff is to make sure the place is friendly and well
maintained. In terms of social relationships, the staff’s role is to deal with complaints,
requests, and bad behavior among visitors.

The analogies in terms of human behavior for the Web are that the design of a site helps
to make sense of the place. Features might be a reason to visit, but if visitors are ignored
or other people are rude to them, they won’t return. This analogy can be extended
across much of the site and to different roles. There can be more than just three roles,
and the degree to which you involve your community can be more complex than in a
bar, but it helps to bring warmth and life into something that is essentially just code
showing words and pictures.

Negative behaviors in a bar or café are the overt commercial activity analogous to spam:
handing out fliers, begging, and selling illicit DVDs, for instance. These are much easier
to deal with than arguments between customers.

Starting Up and Managing a Community
Starting a café or a bar is really hard work, and maintaining one is even more difficult.
The same is true of communities on the Web. They require that you invest a lot of your
time to draw the community together and get people to interact. Once your community
is up and running, you need to take time to engage with them and understand their
desires and interests.

Thinking of a website launch as similar to the launch of a real-world place is helpful.
You would not open a café and then ignore it. Nevertheless, the idea of a site launch
being the end of the project is very common, especially among broadcasters and ad-
vertising agencies. It stems from old media working habits. TV companies have a wrap
party when a program is complete, but the program will be broadcast weeks or months
later with a different team responsible for scheduling and promotion. With advertising
agencies, the time lag is not the issue, but such agencies are used to dealing with one-
way media. There is often no space for interaction with the audience, just a one-way
message.

Launching a social web application comprises about 40% of the effort involved; the
rest is comprised of encouraging people to use and continue to use the site, in addition
to continued software development. In Chapter 6, I recommended that you allocate
community management as part of people’s work roles. Whether this involves everyone
or a few individuals depends on the size of your company and the potential community.

268 | Chapter 15: Managing Communities

Actually using your product and talking to people who use it online is the core part of
the community manager’s job. It is essential that you build a solid personal relationship
with the people on your site. The staff members for most successful social web appli-
cations have a very visible public profile; they are part of the community. Even if you
are not a startup site, you should emulate this behavior as much as possible so that you
can find the people who really care about your product and support them, their desires,
and their interests.

Most people want to live a life without lots of conflict. Your main challenge will be to
get the people visiting your site to contribute. But once there, they might get into heated
debates with other people on the site, so some clear and simple community guidelines
can help everyone determine when people overstep boundaries. Generally, these are
libel and personal attacks. I’ll cover libel later in the chapter, as it is a specific subcase.

Trolls and Other Degenerates
Trolling or griefing occurs when people deliberately attempt to spoil the enjoyment of
a site at the expense of others. (Griefing is a term from the online game world;
trolling comes from Usenet and message boards.) Trolls start conversations with the
intent to generate an emotional response and derail the normal conversations on a
forum. “Don’t feed the trolls” is a common expression referring to a simple approach
to community management: don’t give undue attention to those who are seeking to
provoke it (see Figure 15-1). Generally, trolls do not care much about your site or the
topic, they are simply getting involved to bait people. Given the lack of normal face-
to-face cues on the Internet, people tend to misread the intention of a comment and
respond more directly than they would if they were in front of the person. Trolls un-
derstand this and seed conversations that they know will get a reaction. Once the troll
has instigated a verbal war, he will either leave the site, amused at the disruption he
caused, or continue to add further provocation.

Figure 15-1. Don’t feed the trolls (image from http://xkcd.com/493/ used with permission)

Trolls and Other Degenerates | 269

The article at http://www.wired.com/gaming/virtualworlds/magazine/16-02/mf_goons
gives good insight into the reasons behind people griefing others on virtual games.
Similar dynamics are at work in trolling:

Broadly speaking, a griefer is an online version of the spoilsport—someone who takes
pleasure in shattering the world of play itself. Not that griefers don’t like online games.
It’s just that what they most enjoy about those games is making other players not enjoy
them.... Their work is complete when the victims log off in a huff.

Unfortunately, being a troll is in the eye of the beholder. On an emotive issue, someone
from the other side might seem to be a troll to you, but from his point of view he is
behaving appropriately. A recent and detailed article and interview with a renowned
troll (see http://www.nytimes.com/2008/08/03/magazine/03trolls-t.html) paints a simi-
lar picture for why trolls hassle and upset people on the Internet.

Troll is a pejorative term and often used to color other people’s reactions to a new voice
or a contentious point of view that disagrees with the commonly held view of the com-
munity. Another reason that you need to be involved with your community: to deter-
mine the difference between minority viewpoints and people just stirring the pot for a
reaction.

A common expression in community circles is “Don’t feed the trolls.” Ignoring them
can be an effective way to deal with trolls, as they are essentially attention seekers.
Blatant trolls are easy to identify; they are against the core belief of the site and have
simple baits. However, there are many more sophisticated trolls who can formulate a
decent argument. Sometimes, they use sock puppets—additional accounts—to aug-
ment their arguments. Sock puppets can be easy to identify and ban, as they tend to
agree only with the viewpoint of the troll and comment only on threads where the troll
is active, but identifying them requires good management tools. Going to the effort of
maintaining multiple, seemingly real, identities is a lot of work, but it does happen. A
more likely situation you will need to deal with is argumentative regulars or difficult
(usually misunderstood) newcomers coming to your site and causing trouble.

Separating Communities
To allow some normal conversations to continue on Usenet, many contentious groups
create a subgroup for advocacy. For instance, the comp.sys.mac.advocacy group was
created so that comparisons between the Macintosh and other computing platforms
would not drown out other conversations. The website http://www.newsdemon.com/
newsgroup-info/comp.sys.mac.advocacy has the original charter from 1992:

The existence of *.advocacy sub-groups is a recent innovation in netnews. There are
currently 5 or 6 *.advocacy newsgroups and they have had a mixed success. In most cases
they *have* succeeded in limiting the appearance of comparative articles in the other
groups of a hierarchy where they appear.

270 | Chapter 15: Managing Communities

http://www.wired.com/gaming/virtualworlds/magazine/16-02/mf_goons
http://www.nytimes.com/2008/08/03/magazine/03trolls-t.html
http://www.newsdemon.com/newsgroup-info/comp.sys.mac.advocacy
http://www.newsdemon.com/newsgroup-info/comp.sys.mac.advocacy

In 1992 lots of people were predicting the demise of the Mac, so encouraging people
to discuss the future of Apple in one place meant that people who actually were using
Macs could discuss their interest in peace.

Splitting a group can be beneficial when there is the potential for the noise of repeated
arguments, or for a particularly noisy faction to drown out normal conversation. A
parallel approach on the early version of the Flickr site was that rather than having a
single feedback forum, there were two forums: a FlickrIdeas forum and a FlickrBugs
forum. Separating negative feedback from ideas gives people a space to complain and
allows the team to make constructive responses without having to talk about promised
new features in the same breath. Mixing feature requests and bug filing makes for untidy
product development; separating them makes it is easier to differentiate between bugs
that are being reported and features that are being requested.

The now closed BBC Science discussion boards took a similar approach, separating the
discussion of evolution from the main science conversations. This allowed the people
who wanted to discuss science to skip past the creationism versus evolution arguments.
If you take this approach, you need to ensure that you engage with the new community
you have created; otherwise, they will come back to the rest of the site, negating your
desire to give them a separate space.

Encouraging Good Behavior
Unfortunately, trolls and spammers are part of the Internet landscape and are unlikely
to pack up and go home, so encouraging them to move on to another site is (sadly) the
answer. One basic idea is to give weight to the online identity that everyone has on your
site. The more information an identity has about someone, the easier it is to determine
whether he starts arguments all the time or plays nicely.

This approach is slanted against newcomers, but it is an accurate reflection of how the
real world operates. People in general do not get full access to a community the moment
they walk through the door; respect and trust are earned. That being said, you do not
need to implement all of these restrictions on day one; a wait-and-see approach is often
best.

Authenticating Through Profile Pages
Much of the trolling that occurs on the Internet happens because people can hide or
pretend to be someone else. Often, the identity they have is transient and flimsy; for
instance, their last three posts or no link to an external site. By making detailed profile
pages that show a summary of the contributions a person has made, you can give others
in the community a sense of who that person is in real life. See Chapter 12 for more
detail on profile pages.

Encouraging Good Behavior | 271

There is an obvious privacy concern here: no one wants to feel that their every action
on the site is being monitored. So, you need to strike a balance. Listing every comment
or reply that an individual makes might be going too far; listing the areas of the site to
which she contributes on a regular basis might be enough. This would mean that you
can determine whether the person is a regular for that topic area, so others can know
whether to trust her viewpoint.

In terms of data analysis, you should definitely capture a lot more data about your
community than you actually display on the site. You want to be able to see how often
someone replies to and starts topics. Chapter 16 discusses the kinds of admin systems
you will need to create.

Even without these tracking tools, a simple biography profile page showing real name,
photograph, and location gives people a place to give their identity further credence, if
they wish to do so. The people who contribute without supplying any personal infor-
mation will have less face validity on the forum. People can make stuff up or not provide
what’s requested, but having a profile page at least stops people from claiming one
identity one minute and another identity on a different board later in the day:

The serious ones would give credible information; the jerks hiding behind anonymity
would be exposed for what they are.*

—Timothy Garton Ash

Rating Posts and People
A very popular technique on some sites allows people to rate the content of people’s
posts and then indirectly rate the people making them. Slashdot provided an early
example of this method, with its karma points. A karma point was an earned token that
allowed a longer-term member to bless the postings of a newer user with a “+5, in-
sightful” rating, or negatively rate a member downward. Readers could then set a floor
above which they would read the comments on a thread, typically zero or higher. This
meant that most idiotic posts were filtered out of view. It was a manual approach and
it generated a whole new repertoire of low-value postings of “Mod this up” or “KP
please,” but it represents a good early approach to community management.

The mechanism for allocating these points varies among sites, but the aim is to allow
filtering of content. Either the post itself is rated or the person making the post is rated.
The kinds of ratings vary, too. The most common practice now is to rate the content.
This is usually offered as a single positive action, such as “like,” “was helpful,” or
“favorite.” Only providing the means for positive feedback encourages a happier com-
munity feeling, as people are not looking for content to be negative about. On the other
hand, Amazon allows positive and negative ratings of reviews, which seems to work
well for it.

* http://www.guardian.co.uk/commentisfree/2006/jul/13/comment.mainsection

272 | Chapter 15: Managing Communities

http://www.guardian.co.uk/commentisfree/2006/jul/13/comment.mainsection

The goal of rating is to let the best content float to the surface so that someone reading
the site can see the best reply or best review of an item easily. Conversational threads
on community software can become very long, so some summary tools help a lot.

Another affordance ratings offer is when they are aggregated onto a person’s profile.
Yelp, the restaurant review site, is a good example of this type of aggregation. Profile
pages include a rating summary so that you can see whether the profile owner tends to
rate high or low; the number of posts and replies the person has made is also available
there. In this way, you get to see how helpful or knowledgeable he is. Trolls generally
post a lot and don’t get marked as being helpful very often. You can develop a complex
algorithm for determining the most helpful people on a site, but frequently a simple
count is enough to give people a sense of what a person is like. Figure 15-2 shows a
profile from Get Satisfaction, which gives a brief summary of this person’s contributions
to the site.

Figure 15-2. Chris Messina’s profile from Get Satisfaction, showing the “marked as useful”
functionality (used with permission)

Encouraging Good Behavior | 273

A cautionary tale on points-based systems for members comes from Ben Brown, for-
merly of Consumating (http://benbrown.com/says/2007/10/29/i-love-my-chicken-wire
-mommy/):

The primary problem with Consumating points was that they did not actually give in-
centive to the members to do anything valuable. What we wanted people to do was write
interesting posts, and then invite their friends to comment upon them. However, posting
things to the site earned you nothing and inviting your friends earned you [a] similar
amount of nothing. Even voting on and ranking content for us earned you nothing. The
only way for a member to earn points was for another member to vote on one of their
posts. We had essentially short-circuited our rewards system by handing over all of the
power to the whims of our fickle members.

Members without any pre-existing friends on the site had little chance to earn points
unless they literally campaigned for them in the comments, encouraging point whoring.
Members with lots of friends on the site sat in unimpeachable positions on the score-
boards, encouraging elitism. People became stressed out that they were not earning
enough points, and became frustrated because they had no direct control over their
scores.

Even worse was our decision to allow negative votes that actually took points away.
Anyone who joined the site immediately opened themselves to cavalcades of negative
feedback from existing members whose goal was to protect their own ranking.

Directly linking points to profiles and making the controls for those points obvious and
accessible can be harmful to your site. In this case, the established members could keep
out new members. Be very careful if you are ranking your members in an obvious
manner.

Gaming the System
Whenever you create a system for managing a community, someone will try to work it
to his advantage. Earlier, I mentioned the karma point requesting that started on Slash-
dot. On Flickr, people started posting their pictures to dozens of loosely relevant
groups, hoping for more views and faves so that they would get their pictures on the
interestingness list. Another example of social hacking comes from eBay. Its threshold
of 10 sales before some set of functionality is enabled is often worked around by small
groups of people buying and selling low-value items to one another so that they seem
to be legitimate.

Whenever planning a new community management feature, spend some time thinking
through how you would try to break it. What behaviors are you unintentionally en-
couraging by creating some new social rules for your community? Analyzing your new
feature for these flaws before you build it is time well spent. You might end up inad-
vertently creating a new situation that is even less palatable. If possible, get people who
are not part of the core team to do this review; experienced users or fellow developers
are good candidates. When making something new, it is hard to think like a bad guy
as well as design for the well-behaved members, too.

274 | Chapter 15: Managing Communities

http://benbrown.com/says/2007/10/29/i-love-my-chicken-wire-mommy/
http://benbrown.com/says/2007/10/29/i-love-my-chicken-wire-mommy/

Membership by Invitation or Selection
The famous Brainstorms community (http://www.rheingold.com/community.html), run
by Howard Rheingold, operates on an invite-only basis. Once in, you need to be an
actively contributing member for two weeks; otherwise, you get shown the door. Many
other private mailing lists operate in this manner. Some even go as far as to allow
blackballing of new members—any member can object to a new member joining with-
out having to explain her reasoning. These measures are not necessary for many com-
munities, but they are an effective tool for keeping out spammers and trolls.

Invite-only is widely used in setting up sites. The invite-only beta remains popular, and
has a lot of advantages going for it—namely, that you get already-connected commun-
ities of people to join the site. (Chapter 18 explores launching in more depth.) Within
Nature Network, private invite-only groups exist and are invisible until you are invited
to join them. They are widely used as private spaces for reviewing published academic
papers. Normally, the participants would not comment on these papers in public, so
the private forum keeps their opinions safe from other scientists.

Search engines make everything on the Internet discoverable. Many communities may
not want their activities to be quite this public. A place where all the participants are
known and the conversation is hidden from the rest of the site can be regarded as
private. This differs from the common type of Internet group, where common interest
draws people together, rather than defined membership listings. Private groups place
more demands on the person who is running the group and are harder to manage from
a site perspective. If an argument breaks out among members of a private group, it is
appropriate to bring this to the site moderator’s attention, as he is unlikely to be a
member of the group.

Some sites use external memberships as a means of controlling access to a site. For
example, Sermo is a site for doctors where they can discuss medical matters without
comprising patient confidentiality. Members must be practicing MDs in the U.S. This
type of site creates an automatic community, but it requires just as much work to
encourage people to participate. Any site where the content should be available to only
certain individuals should consider making areas private.

Access can be via payment or via a username and password with associated privileges.
The challenge then becomes making sure only the right people get in. The Internet is
rife with free password sites, and if you make the target too tempting, you will attract
scammers.

Rewarding Good Behavior
Some sites open their functionality or even their membership on a good-behavior basis.
If you are a good, active citizen on a site for a certain time period, you can use additional
functionality of the site. A good example of this might be the ability to send personal

Rewarding Good Behavior | 275

http://www.rheingold.com/community.html
http://sermo.com

messages directly to other members, or become a group host or help manage the
community.

Earned privileges can be an effective way to encourage spammers to go away. A lot of
spam is entirely automated, so having to participate on your site is a lot of work for a
spammer. This technique is less effective with trolls, as their reward is not financial. In
fact, making it hard to get in can increase their joy of spoiling the fun for those select
few already inside.

One area worth looking at is any form of direct personal messaging. Some sites, such
as Facebook and LinkedIn, make personal messaging available only when a two-way
relationship is already in place. On Twitter, you can direct-message anyone who follows
you, but simply following someone does not mean that you can direct-message her.
Others, such as Nature Network, allow direct messaging on the decision of the recip-
ient; she can opt-in to allow other people to send messages to her, a capability that is
turned off by default. In both cases, the ability for a new person to send personal mes-
sages could be further controlled on the basis of previous behavior.

Helping the Community Manage Itself
Taking on the entire community management for a busy site is a big undertaking.
Companies such as Yahoo! and the BBC spend large amounts of money running their
sites, often using external companies to handle moderation. Sometimes this is neces-
sary, but increasingly other approaches are proving to be more (cost-) effective.

Probably the most important thing you can do is to get the community to help you run
the site, using the administrative tools you create for them. For example, I set up a
running group on Flickr, then stopped running as often and so my support for the group
dropped off, too. Feeling bad about that, I looked to see who was active and found
someone who was starting conversations and posting lots of photos. I contacted him,
asked whether he wanted to help run the group, he accepted, and I made him an admin.

Flickr supports this flexible approach to group management, as virtually all the groups
are run by their members. Anyone can create a group and anyone can then create further
admins and moderators of the group. There are two benefits to getting the community
involved in running things: your costs drop and the members start to feel that it is their
community. Keeping this sense of involvement is important. Some companies cannot
accommodate Flickr-style moderation; often their editorial needs require them to retain
control of the moderation process. Many newspapers fall into this category. In these
cases, you can still get the community to help with moderation by flagging issues for
editorial attention.

There are many approaches to community management, from empowering some peo-
ple to help manage the community to allowing everyone to rate the content of everyone
else. There are also a range of semiautomatic posting approaches based on analysis of

276 | Chapter 15: Managing Communities

comment frequency and the content of comments. In the next section, we’ll look at
some of these tools.

Moderating a Community
There are many models for how moderation should work on a site, and new ones are
appearing frequently. The problems remain the same: keep people friendly, stop trou-
ble as soon as possible, and allow people to feel involved. Online conversations can get
heated quickly, given the partial attention they are frequently given compared to a face-
to-face conversation. The limited text-only medium also means people say things that
they intend as innocuous, but can be misread easily.

Allowing limited edits after posting is one good way of smoothing things over. Offering
a grace period of 15 minutes means corrections can be made and hasty sentences re-
vised, as in the example in Figure 15-3. On a fast-moving board you may find that the
15-minute window means there are already responses to the post. In this case, it is
important to timestamp the comment to show that it was edited. A belt and braces
approach would be to version the comment in question so that the previous comment
can still be read. Few sites need that level of content management, but the automatic
timestamping can be helpful.

Figure 15-3. Allowing a 15-minute grace period for editing posts (this element is taken from Get
Satisfaction)

Moderation is the process of dealing with a situation in which someone is upset or
irritated. It generally involves at least two people, and the situation can range from mild
factual inaccuracies to hate speech or libel. There needs to be a means for raising the
moderation request, a means of notifying the appropriate person of the request, and a
means of responding to it. There are dozens of ways to do this, especially around the
triggering of the moderation request.

A simple system allows for any member to raise a moderation request on any comment
left by another member. More complex systems might require multiple people to re-
quest moderation, or allow only people of a certain level or seniority to request it. Some
systems have the moderators reading and acting on posts, essentially acting as both
users and moderators.

Once the moderation request has been raised, it needs to be communicated to the
people who are responsible for handling moderation for that section of the site. Typi-
cally, this is done through email, but it could be an SMS message, or an IM, or even a
dedicated web application.

Helping the Community Manage Itself | 277

Handling the moderation is the next step. Again, a simple approach is one in which
the moderator decides whether the comment is inappropriate, and if she decides it is,
the comment from the original author will be modified in some manner. Simply re-
moving the comment entirely will disrupt the conversation flow on the site, so replacing
it is usually the best approach. A “this comment has been removed by the moderators”
note is effective. Another approach is that of disemvoweling, from Teresa Nielsen Hay-
den, moderator at Making Light and Boing Boing. Disemvoweling removes all the
vowels from a comment left by a person (see http://en.wikipedia.org/wiki/Disemvowel
ing). It is still possible to read the comment; it just requires a bit more effort, so many
people will pass over it and move on. It can be an effective means of silencing, but not
censoring. Moving arguing commentators to a naughty room can also be very effective.
Sometimes people want to have an argument, so giving them a space to take it outside
is sometimes the best approach to handling this kind of energy. Usually everyone else
would rather get on with a productive discussion; the arguing pair can be safely moved
elsewhere.

Some sites make the moderation response process more collective, requiring that an-
other person agree with the suggested moderation action. This makes moderation more
of a community act, resulting in less potential for partial moderation. It can be an
effective approach when the moderators are also active users of the site. The politics of
moderation could fill many pages. Starting with a simple system and developing it
alongside your community will help you create one that works well. It can be easy to
fall into a them and us model, and difficult to get out of. Most members of your site are
not out to get you, but keeping the jerks at bay can be tiring work, particularly if their
attacks on the moderators become personal.

Some companies run quite strict forums. Apple, for instance, is notorious for shutting
down conversations on its forums that become too critical or noisy. Issues are rarely
acknowledged, but Apple does pay some attention to the forums and fixes are forth-
coming for problems. See the article at http://www.guardian.co.uk/technology/blog/
2007/dec/21/applecensorshipatissueoni for some examples.

On Wikipedia, moderation and page locking are a high art. The “talk” page for any
article often comprises a long-running debate over the content. Some pages become a
battleground between the whitewashers, who want to force an issue in a particular
direction, and the neutral-point-of-view editors. For instance, the George W. Bush page
is sometimes fully locked (see http://en.wikipedia.org/wiki/Wikipedia:Protection_pol
icy). Most organizations will not have the passions that ride behind Apple and Wiki-
pedia, but these examples are helpful in anticipating the kinds of issues your company
(commercial or non-commercial) might have to deal with.

Intervention and Course Correction
A major part of community management is ensuring that people get along with one
another. Some of the work can feel like that of a counselor or social worker, in that

278 | Chapter 15: Managing Communities

http://en.wikipedia.org/wiki/Disemvoweling
http://en.wikipedia.org/wiki/Disemvoweling
http://www.guardian.co.uk/technology/blog/2007/dec/21/applecensorshipatissueoni
http://www.guardian.co.uk/technology/blog/2007/dec/21/applecensorshipatissueoni
http://en.wikipedia.org/wiki/Wikipedia:Protection_policy
http://en.wikipedia.org/wiki/Wikipedia:Protection_policy

you’re dealing with arguments between individuals, or you’re ensuring that one group
is not actively upsetting another. Tools that allow rapid bursts of activity are helpful in
this regard. Arguments tend to be fast-paced. Using direct emails to intervene and
arbitrate is a very effective mechanism. People can forget that the site is run by other
people and that the rest of the community comprises people too, so a gentle personal
reminder can bring them back to more reasonable ground.

The other main job of a moderator (or host) is to encourage conversation and bring it
back on topic for that board. Sometimes simply intervening and commenting on a
thread can help to direct it back on topic. Other useful techniques are locking, pin-
ning, and splitting. Locking or closing a topic when an issue is no longer productively
being discussed can be one approach to stopping a conversation that is overly negative.
Pinning usually means making the conversation one of the first topics visible on the
message board. This is very helpful for frequently asked questions or announcements.
Splitting can take an otherwise useful conversation that is buried inside another topic
and make it one in its own right. For example, say that in an arts forum, John posts
about theatre ticket availability; 15 posts later, Jane comments about public transpor-
tation closures for the evening in question. The main topic of the thread then becomes
public transportation. This might be a good candidate to split and move to the travel
forum rather than keeping it in the arts forum.

Community management is the positive side of moderation, though not everyone will
agree with the community managers. The community managers are the public face of
the site (see “Community Managers” on page 75). Their actions and opinions help to
shape how the site will evolve and what types of community interactions will be en-
couraged. They are a critical part of the site, more important than how the software
gets built or chosen; but often this role is understaffed or the person or people in this
role are not given the tools require to do the job properly. Meg Pickard, head of Social
Media Development at the Guardian, has drawn up some guidelines for running com-
munities that are a good starting place for your own community; see http://www.guard
ian.co.uk/talkpolicy.

Premoderation and Libel
Some companies decide that vetting everything is the safe approach. While this does
mean that only content you have approved will be on the site, it is a very slow way to
get a conversation going. Opening hours and vetting are appropriate for forums aimed
at children, however; for a good example, see the BBC CBBC message board, aimed at
kids 15 and younger (http://www.bbc.co.uk/cbbc/mb/).

Helping the Community Manage Itself | 279

http://www.guardian.co.uk/talkpolicy
http://www.guardian.co.uk/talkpolicy
http://www.bbc.co.uk/cbbc/mb/

Online conversations can get heated and move very quickly. There are
countless examples of heated conversations happening while the edi-
torial staff looked the other way. The LA Times wikitorial is a famous
example. The Internet operates 24 hours a day, even if your team or staff
members do not. This can lead some companies to think that having
the opening hours for the community coincide with their working hours
is appropriate. If you do this, though, you will miss some of your best
discussions.

According to U.S. and UK law, premoderating or vetting a board means you become
the publisher of the content and so you take on the legal responsibility for libel. Libel
law is complex and varies from country to country, so make sure you get legal advice
on how the law pertains to your country. Understanding the position in the United
States is important, as libel claimants can file claims in any country you have offices in
and settlements tend to be higher in the U.S.

Extreme Measures: Banning Users and Removing Posts
Sometimes things get out of hand and it is tempting to reach for the ban button. Simple,
outright, permanent banning of people encourages them to come right back again un-
der a different name. However, if you have profiles, the amount of work involved in
creating a new profile will discourage banned people from popping up again. A better
approach is to give a timeout, a ban for a few days. Bans from certain sections of the
site can work well, too. You want to retain the person as a member of your community
in most cases, but ensure that he is aware you think his behavior is out of line. Banning
should never be the immediate response, except for porn, spammers, or other extreme
examples.

Too frequently, a ban or removal of a post will make the moderation seem harsh, and
the community will feel like they are being watched and may drift elsewhere. It is im-
portant, then, to have a clear set of house rules and ensure that your own team sticks
to them. If you are changing policy, make the changes clear, too.

Competing commercial needs can cause conflict in terms of policy setting. If you do
not allow advertising or items for sale, handling manufacturers and vendors on your
forums might become tricky; encouraging them to have a voice without giving them a
free storefront is a challenge. Working with your commercial partners and getting them
to understand the balance between community involvement and your needs for ad-
vertising income is important. Handling criticism of commercial partners from the
community is also necessary.

Banning should be your last resort, and you should use it only when the situation has
become unworkable for everyone concerned. Those banned should pose a real problem
to the entire community, disrupting the positive experience; you should never ban
someone simply because he does not agree with you. Repeated breaking of community

280 | Chapter 15: Managing Communities

guidelines and a failure to respond to approaches for reasonable behavior are the basic
guidelines upon which to make this kind of decision. There is no other choice for some
kinds of users:

However, we’ve come to the conclusion that sometimes there is simply not a way to deal
with a member of the community who insists on constantly and consistently harassing
other community members.†

Good moderation is an active process, one that evolves and changes as the site com-
munity develops. As such, it is also necessary to be responsive to the wider community
that your group is part of: the phrase “no man is an island” is just as true for Internet-
based social software. Community management at Flickr is a good case in point:

Heather Champ doesn’t just guard the pool and blow the occasional whistle; it’s a far
more delicate, and revealing, dance that keeps the user population here happy, healthy
and growing.‡

Heather Champ is Flickr’s Director of Community. In the article from which the pre-
ceding quote was taken, she describes the daily process of reviewing and deciding which
communities to work with and which to act against. Finding a balance between bene-
fiting the individual and the community at the same time is the goal, and it requires an
active approach to community management.

Absent Landlords Lead to Weak Communities
Community management is a full-time job. Someone needs to be encouraging people
and reining them in all the time. The time it takes to do this can be hard to carve out
of a busy job. Supporting community management is a bigger undertaking than many
people realize. As a result, often you find sites with minimal management in place.

Building good communities requires more work than the setup does. If your own staff
will manage the site, you need to factor this into their working hours. If you are relying
on the community to help you manage the site, you need to give them tools for man-
aging their groups and forums. These tools need to be clear and simple to use for the
tasks that require urgent attention. Good guidelines on how to run communities and
coaching early on for new community managers can have a huge impact on whether
they succeed or fail. So few people are willing to start things on the Internet that those
who are willing need your help to keep them at it.

Filtering and Automation
Repetitive, low-value posting can be a very negative influence. One-word or one-phrase
comments such as “Lame” and “First post” create a very juvenile atmosphere. Slashdot

† http://blog.getsatisfaction.com/2008/05/20/the-ban-hammer/

‡ http:///www.sfgate.com/cgi-bin/article.cgi?f=/g/a/2008/09/29/onthejob.DTL

Helping the Community Manage Itself | 281

http://blog.getsatisfaction.com/2008/05/20/the-ban-hammer/
http:///www.sfgate.com/cgi-bin/article.cgi?f=/g/a/2008/09/29/onthejob.DTL

famously suffers from this kind of behavior. It is quite widespread, though, and the
web comic XKCD’s message board developed a novel tool to deter “me too” comments.

The tool ROBOT9000 analyzes past conversations on a message board and allows only
the posts that are unique. So, you can have one occurrence of “Lame,” for instance,
but it cannot appear again. Offenders get a time-based ban that lengthens with each
repeated occurrence. This sort of intelligent filter can be a real help in forcing people
to use their brains and not their fingers first.

Get Satisfaction is trying to solve a similar problem: that of asking the same questions
repeatedly. On the site, new topics are filtered and matched against previous topics.
Before a person can submit her new topic, she is shown the matching previous prob-
lems. This appeals to basic human nature: people want answers quickly. They often
think their situation is unique, and quickly ask a question without searching the forums
first. By using their question as a detailed search query, you ensure that any good can-
didate topics are likely to be found. Get Satisfaction gains a happy new user, as she
found her answer, and the company in question avoids having the same issue dealt with
in dozens of repeat postings.

Filtering topics and replies is a relatively recent development, but many sites could
improve with this intelligent matching approach. Matt Gemmell made a similar argu-
ment recently in his blog, http://mattgemmell.com/2008/12/08/what-have-you-tried.
The post is aimed at Cocoa developers and the increasing numbers of so-called pro-
grammers who do no research and just ask for code to be written or modified. He makes
the argument that problem solving should be part a developer’s mindset.

Encouraging your members to research and think before starting new conversations
will make for a better community experience all around. Photography sites, for in-
stance, are filled with questions about which lens is best, and hi-fi sites with questions
about which amplifier and speakers to buy. The problem is widespread and filtering
offers an approach to solving it that gets around the general laziness of most people,
who will not formulate a detailed query but will happily write a new topic in the hope
of an answer.

Balancing Anonymity and Pseudo-Anonymity
I touched on this topic earlier in the book, but the choice you make in terms of how
much you want your participants to tell the truth about who they are will have a direct
bearing on the kind of community you create. Few sites allow fully anonymous com-
menting, where the site owner does not know who is commenting. Most require an
account of some form to be created with email validation. Thus, all commenting is
pseudo-anonymous, rather than anonymous. The participants can hide their identity
from the others on the site, but you, as the site owner, should be able to get in contact
with them if the need arises.

282 | Chapter 15: Managing Communities

http://blag.xkcd.com/2008/01/14/robot9000-and-xkcd-signal-attacking-noise-in-chat/
http://mattgemmell.com/2008/12/08/what-have-you-tried

You’ll need to allow for screen names, as all the John Smiths in the world cannot be
guaranteed the username “JohnSmith.” However, encouraging the use of real names
means it is easier to create a community where people know one another and can find
friends. The popular practice of linking to profiles on other sites is making an anony-
mous profile on the Internet harder to maintain. For the majority of forums, encour-
aging the use of real names as screen names is a good baseline. However, there are many
situations in which people will not wish to be seen online discussing sensitive issues,
or they will worry about being caught wasting employers’ time on the Internet, so you
cannot mandate the use of real names on your site. The larger the role you allow for
pseudo-anonymous usage of your site, the more opportunity people have for mischief.
This is fine for some sites, but if you want long-term, more serious discussions to evolve,
allowing people to use their real names will help. This can be based on profile infor-
mation, if names are too sensitive. Describing someone as “late 30s, lives in London,
and develops web applications” describes me and many of my friends, but it gives a
better sense of who I am than simply “zzgavin.”

Summary
Once the initial site is complete, community management will account for more of the
budget and will define the site more than any feature. Striking a balance between peo-
ple, editorial, and technology is important; you need all three of these elements pulling
together for a system to work well. Once the site is live, the community managers and
the users of the site are the main people who will give direction and opinion regarding
how the site should be developing. They are key to its future, as they are the people
who are there. However, the noisiest people are not necessarily the people to build for.
Your community managers will help to find the middle space between the new people
you have not met yet and the keen regulars.

Managing the conversations on your site can be a difficult task: situations will get out
of hand, and people will get upset. Some of your users will likely hate you, and will tell
you this loudly. Developing a well-understood set of community guidelines and a good
set of tools to track and manage the traffic on the site will help keep this in check.
Taking time for a regular meeting of the community and product managers is also a
helpful activity, giving time to review how you and the community are interacting.

Summary | 283

CHAPTER 16

Writing the Application

A complex system that works is invariably found to have
evolved from a simple system that worked. The inverse
proposition also appears to be true: A complex system

designed from scratch never works and cannot be made
to work. You have to start over, beginning with a work-

ing simple system.*

—John Gall

This chapter and the following one are the main technical chapters in this book. That
being said, this chapter is not aimed only at developers; you will not find a lot of code
here. This chapter offers advice on how to create applications and integrate the design
and product management aspects of building an application with the code-writing
aspects.

I’m going to make a few assumptions about your experience first: you use validating
HTML and probably have a preference for HTML, XHTML, or HTML5; you use CSS
to present the visual aspects of your site and JavaScript to handle the behavior of your
application in the browser; and you understand the benefits of unobtrusive JavaScript
so that your site degrades gracefully and works well without JavaScript. If my assump-
tions are incorrect, Jeffrey Zeldman’s Designing with Web Standards (Peachpit Press)
and Jeremy Keith’s Bulletproof Ajax (New Riders) are important reading first.

I’m also not recommending any particular language; recent social web applications
have come in everything from Lisp to Scala to PHP, Ruby, and Python; there are even
some C applications. Pick the one you feel comfortable developing with and concen-
trate on writing clean, understandable code.

If you come from a Java background, you might be more familiar with books such as
Enterprise Integration Patterns by Gregor Hohpe and Bobby Woolf or Patterns of En-
terprise Application Architecture by Mark Fowler (both published by Addison-Wesley

* http://en.wikipedia.org/wiki/Gall's_law

285

http://en.wikipedia.org/wiki/Gall's_law

Professional). This chapter won’t go into the depths that those books do, but as web
applications grow from being scripts talking to locally hosted SQL databases to mul-
tiserver distributed applications, a lot of the material in those books becomes relevant.

So, what is in this chapter? I’ll show how social applications differ in architecture,
development approaches, design, and deployment from other applications. We’ll also
look at some important recent open web protocols and frameworks. The internal admin
systems and collective intelligence you can glean from these social applications will
round out the chapter, with space to look at the environmental impact of your appli-
cation for good measure.

Small Is Good: A Reprise
Simple systems are easier to relate to, and are more likely to work than complex systems.
They do need to have certain capabilities to support extension into greater complexity,
however. From the start, design your systems with the expectation of adding to them.
This means you need to think about how elements might integrate rather than building
closed systems. Starting small means you can more easily test whether your approach
to something is correct. However, it is too easy to find your plans for a small thing
growing like a weed, with additional functionality being added and clouding the initial
focus. Larger teams and companies suffer from this in particular; there are too many
opinions and vested interests to support.

One main content type and two to three activities to do should be enough for launch.
One of these activities must be the primary one and the others should act in a supporting
role. You can add more capabilities later. Keeping your focus on one small product is
not easy. Remember Steve Jobs’s quote about product focus, “I am as proud of the
things we have not done as I am of the things we have done.”† You need to be just as
prepared to set limits and not pursue every interesting idea.

Designing an API and expecting further development to come from the API is a good
approach to deflecting the desire for a big application. A good example of a site that
still feels small is Flickr; there are many things to do on Flickr, but the focus of the
application is still people and photographs.

How Social Applications Differ from Web Applications
There are key differences between a regular website and a social web application. Much
of the content on a social application belongs to the people who use the site, as opposed
to the site owners on a regular website. This ownership aspect is probably the most
significant difference.

† http://money.cnn.com/galleries/2008/fortune/0803/gallery.jobsqna.fortune/6.html

286 | Chapter 16: Writing the Application

http://money.cnn.com/galleries/2008/fortune/0803/gallery.jobsqna.fortune/6.html

In a social web application, other people’s identities are strongly linked to the content
they have contributed, and both their identity and this content are strongly linked to
your site. Other people are an explicit part of your website. Social web applications are
no longer a simple case of your content, your servers, your databases, and your software.
Other people are involved. You can’t easily talk with these other people and explain
things to them. In addition, they have rights; the content belongs to them. You need
to respect their needs and try to do the right thing with their data. The data remains
theirs, which is easy to forget.

The structure of this data is also different. It is not a simple table of inventory to show
on a page. It is highly interlinked and frequently polymorphic. A tag belongs to a piece
of content, yet the tag was placed by a person. Depending on your application, this
same tag could have been placed by multiple people on the same item of content. The
tag itself might be a member of various tag clusters, which help to refine its meaning.
Functionality can be polymorphic, too; a commenting service can exist on events or on
articles.

Then there is your community; a good social application will be a close fit for your
community’s needs, but any one of them will be unable to articulate what the com-
munity actually wants, let alone how to build it. They can describe what they personally
want, but abstracting this across the thousands of people on your site is difficult. Yet
they are there on your site, at arm’s reach as a user of your service. Given the relation-
ships that are prevalent on social applications, you are likely to interact with a good
number of users on a daily basis on your site. The scope for staff-to-member interaction
on most other types of sites is low.

Drawing on this relationship between your community and your site is a strength.
Carefully listening to the community will help you figure out what they want, and this
should lead to your site being a success. Your community should shape what you build,
not specify what you build. Certainly, you should hold off on building a large and
complex site before unveiling it as a completed entity.

One other aspect that affects social web applications is the rapidly evolving swirl of
protocols, APIs, and frameworks. Over little more than a year from early 2008 and into
2009, there has been much activity in open social web technologies. OpenID, OAuth,
Portable Contacts, Open Social, Activity Streams, and the many Connect services have
all progressed in leaps and bounds. This alone makes fixed, multiquarter development
plans fragile at best.

Agile Methodologies
Agile approaches to working with lean software such as XP and Scrum are popular ways
of delivering social applications. Planning a month at a time with an actively maintained
product backlist is a good development structure for social applications. A product
backlist is a simple list of all the ideas you’ve had for your product, good and bad. On

Agile Methodologies | 287

a monthly basis, you assess what is relevant and put that forward for the next month’s
release. This approach comes from Scrum, and the intention is to slow the pace of bright
ideas interrupting already planned work, but to still have a place to capture them.

Planning even quarterly releases means you will be creating the application your com-
munity wanted four to five months earlier, given the time required to plan and agree
on functionality.

The Agile Manifesto‡ is a good approach to social application development (see http://
agilemanifesto.org/) and makes the following recommendations. The italic items are
valued over the items on the righthand side:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

The end-to-end prototyping approach encouraged within agile methodologies is also
a good approach to discovering how things might work on your site. Making a working
version of the first element of your problem in your application means you have a
working version. Building each component completely, one at a time, means you get a
working application only at the end of the process.

Understanding the balance between prototyping and designing the user interface is
important. The interface is key, but this does not mean you have to craft the perfect
interface and then graft it onto finished server-side code. The user interface is merely
one layer; it does not specify the system architecture. It should be possible to have
overlapping streams of work determining both the user experience and the technical
implementation on a new application and on larger features. Before we discuss these
considerations, I want to jump ahead and address how to deploy new versions of your
applications to your thriving community.

Deployment and Version Control
Retaining flexibility is important when deploying and managing version control. There
are many schools of thought on how version launches should be handled. Some people
adhere to infrequent and major releases, as is done in desktop software development.
But the majority of web application developers I’ve spoken with prefer a more open
source model of “release early and often.”

This works differently on varying teams. For instance, some teams insist on making
sure the trunk is always deployable, even down to having a 15-minute warning prior

‡ The Agile Manifesto is property of ©2001 Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn,
Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,
Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas.

288 | Chapter 16: Writing the Application

http://agilemanifesto.org/
http://agilemanifesto.org/

to deployment (the trunk is the current, in-development version of your application; it
is where all the check-ins of code get merged). Flickr and Last.fm, which both deploy
frequently, use IRC as a live communications medium for logging all deployment and
configuration activity. (See http://www.slideshare.net/jallspaw/operational-efficiency
-hacks-web20-expo2009 and look specifically at slides 111 through 124. Also see
“Infrastructure and Web Operations” on page 294.) Multiple deploys per day are
possible; even 50 per day in some environments supported by techniques such as con-
tinuous integration, which we’ll discuss later.

Many teams over the past few years have moved from CVS (Concurrent Versions Sys-
tem, one of the original version control systems) to Subversion and, more recently, to
distributed tools. Popular approaches to retaining flexibility revolve around the concept
of branching. There are three main options, each of which has advantages:

• Developing each new feature in a new branch gives a clear separation of where the
new stuff is being created, but makes multiple features hard to develop.

• Developing in the trunk and deploying from the trunk wraps features in condi-
tionals. This gets more complex as the size of the team grows.

• Developing in the trunk and branching for a deployment retains the conditionality
of the previous approach, but gives clarity on what makes the cut for release and
what doesn’t. This is probably the most popular approach used with tools such as
Subversion.

Distributed version control tools, such as Mercurial and Git, are in vogue as of early
2009. Compared to centralized version controls tools, systems such as Git make simple
commits more difficult, but they make previously complex tasks such as merging and
branching much easier. This means experiments are much easier to carry out, which
keeps a deployable trunk. Distributed version control works better with the less office-
centric nature of working environments. Every developer has a complete working re-
pository of the code and can make his own changes, then selectively merge these
changes into the common version. This selectivity provides freedom and allows for
private experimentation.

Understanding your version control system is essential. The product management team
needs to understand the system’s potential and its constraints; the development team
needs to understand the possibilities. This is regardless of the choice of version control
tool, be it SVN, Git, or some other option.

If you have a simple deployment approach, you have the three tiers with something
similar to the following setup:

Developer’s machine
This is the local checked-out instance of code being worked on by individual
developers.

Deployment and Version Control | 289

http://www.slideshare.net/jallspaw/operational-efficiency-hacks-web20-expo2009
http://www.slideshare.net/jallspaw/operational-efficiency-hacks-web20-expo2009

Dev
This is the current checked-in and deployed version of unreleased code for de-
ployment. Initial testing happens here. This server is also the first integration point
for code from each developer. An automated build server may create these deploys.

Staging
Once past the dev tests, the unreleased code is deployed against (a snapshot of)
production data.

Public beta
If necessary, you can put new code on separate servers that selected users have
limited access to for testing (see the next section for more on this).

Live
This is the current released code and live data. It is publicly visible.

This is a fine model, but it allows for only one possible view of the code to the public.
To give alpha users access to unreleased code, they need to see either the staging server
or the public beta server and work against a snapshot copy of live data.

Testing Live Is Possible, but Use Conditionality
An improved version of deployment management allows for different types of users on
the site. A filter for alpha-feature users allows two sets of code to coexist on the live
deployed site. This requires some thought in terms of database setup, perhaps making
copies of tables or writing data twice—to duplicate tables—during migration periods.
A further wrinkle on this results from making different features available to different
types of users. For example, there might be a core feature set, a specific set of alpha
features, and a special need-to-know set of new features. To enable this approach, you
need to be able to support tagged releases and assign the tags to people. Conditional
logic then determines which code runs for which group of people.

Conditionality, like the tagged release setup, gives a much more human approach to
developing features. It is more complex to code for, but it makes rapid deployment
feasible. The internal conversation turns from deploying a feature in a specific public
release at the end of the month, to deploying it for Matt, Paul, and Tom to see what
they think now. You get a much more rapid turnaround in terms of feature deployment
and bug fixing. Alongside these micro deployments, you also can make more standard
feature-led releases. To achieve these releases, you simply ensure that all the conditional
features are either tested and then made available for all, or are removed. This means
you can keep all the development in the trunk and deploy regularly, even several times
per day.

Working in this manner is best with small teams in the same room or, at least, in the
same building. Teams that know one another well can work in this manner, too. How-
ever, this technique will not work as well with large teams that communicate through
project managers, as it is very likely that information will get distorted as its passed

290 | Chapter 16: Writing the Application

from person to person—each adding a layer of interpretation so that, for example, once
a developer’s question about parameters for visualization of a rating system gets passed
through several non-technical managers, it has turned into one about visualization for
user profiles. There is unintentional loss of clarity as the information is passed from
person to person, due to an incomplete understanding of the query and development
systems.

The essence of this approach involves easy, regular communication. Everyone on the
team should know the state of the current development build and what is going to
happen next. An analogy about a home renovation is appropriate here: the carpenter,
the plumber, and the plasterer need to coordinate to ensure that the underfloor (radi-
ant) heating system is fitted correctly. They also need to know what the plans are for
the electrical work so that they leave space for this work.

Test-Driven Development
Another step toward a more fluid style of development comes from testing properly.
Regular, small deployments are recommended, but if they aren’t carefully planned, they
can turn into “firefighting.” However, with the right discipline and tools, it can be a
fantastic development approach. Reliable test support for your project is essential.
Tests need to be fine-grained and comprehensive.

This is not the same as quality assurance (QA), which is usually done by people, perhaps
supported by automated tools. Testing here is entirely automated and integrated into
the build process. QA typically will test an entire section of an application when it is
ready. In this kind of automated testing, testing occurs at the level of individual function
calls.

Approaches such as test-driven development (TDD) are very useful. Test-first devel-
opment encourages an approach whereby the test is written first and run to show that
it fails. The code is written to make the test pass, and then the code is refactored, or
tidied up. Taking small steps here is the right approach. Tests should be fine-grained;
a single test per feature is not enough, but this level of test coverage is what you often
get from tests written after the main code for the application has been written. TDD
gives you these fine-grained tests as part of the developer workflow.

The developer should understand the application she is building and the new require-
ments for the feature. (See Kent Beck’s book Test-Driven Development: By Example
[Addison-Wesley Professional] for more.) The key aspect is that the tests are written
before the application code, rather than in response to the code. This tends to produce
applications with less code and less debugging required. The code needs to support the
tests. Reverting to a prechange version and rewriting based on a version control system
becomes more appealing than debugging. The key contribution from non-developer
members of the team is a set of well-written use cases, including error condition
behaviors.

Deployment and Version Control | 291

Meanwhile, newer approaches such as behavior-driven development (BDD) add a
deeper context to the testing approach of test-driven development. BDD helps devel-
opers see why a feature is being created. Unlike test-driven development, BDD adds a
layer in front of the development process. As such, some people might think it com-
plicates development. However, advocates of BDD suggest that this is simply a change
to how requirements are drawn up, and the focus on why a feature is being created
outweighs the potential additional work involved. Defining desired behaviors and sup-
porting them with tests can give everyone a more complete picture of what is happening.
The language used in BDD is also much more similar to the business language used by
the rest of the team, so it creates a shared vocabulary, which springs from the story-like
approach to defining behaviors.

Support for both test- and behavior-driven development exists in every mainstream
language. On the projects I’ve read about and worked on, both approaches have been
a great help; such tests are definitely not wasted programmer time.

Automated Builds Make Management Easier
The next step in getting to an easier deployment is an automated one step-build process.
There should be a simple script or even a web interface that allows checkout from
version control, runs any appropriate checks, and then deploys. Rollback should be
just as simple so that in case of a problem, a newly deployed release can be reverted.
This is becoming much more common, but older projects, particularly ones which have
components in multiple languages, often require several manual steps before reaching
the deployment stage. Automation is good; humans make mistakes, particularly under
pressure, so automating this drudgery is a great idea.

Continuous Integration (CI)—another tool for supporting flexible development—runs
your tests every time something is checked into source control. With CI, integration
stops being a scary prospect and becomes a regular activity. See http://confluence.public
.thoughtworks.org/display/CC/CI+Feature+Matrix for a list of current CI tools. Daily
integration of builds can be a way to work up to a Continuous Integration process, if
you have an existing project.

Applying Developer Tools to Social Applications
So, how do all these techniques apply to social software? The ability to rapidly deploy
features to see whether they are liked and then to either move forward with them or
drop them depends on reliable code; BDD and TDD will help deliver this. CI, mean-
while, will help keep your project just a few hours away from deployment. You still
need to keep a firm handle on how the whole user experience will manifest itself as it
matures, but with these tools, you should have a firm base from which to work. Most
people like to feel you are paying attention to them; being able to rapidly iterate your
application shows that you care about your community. Having to tell your users that

292 | Chapter 16: Writing the Application

http://martinfowler.com/articles/continuousIntegration.html
http://confluence.public.thoughtworks.org/display/CC/CI+Feature+Matrix
http://confluence.public.thoughtworks.org/display/CC/CI+Feature+Matrix

a bug that occurred in April won’t be fixed until the July build says a lot to them about
your approach to community management.

Making Use of Flexible Development with Your Community
There are a variety of ways to use flexible development, one of which is to randomly
sample users. Twitter, for instance, sampled a percentage of its users with its new search
interface in the first quarter of 2009. Based on the feedback, it altered the user interface
for the search product it got when it acquired Summize (http://blog.twitter.com/2009/
04/discovery-engine-is-coming.html). Sampling up to 2% or 3% of your users can be a
very effective way to find out how a large group of people will use a new feature without
giving everyone access to it. Many other companies use public betas for testing new
features.

Another useful approach is to use a private group or groups. Many sites have a private
“Friend of X” type of group whose members get access to features a few days ahead of
the main release. On Dopplr, for example, there are different private groups for different
features. Some are trip-related, some are early users, and some are based on accepted
invites. Each of these private test groups is more focused than a single alpha testing
group. Groups such as this contain people who are not immediate friends, so there is
some distance that allows for a more critical assessment.

That being said, enabling conditional access on your application requires five things:

• A group of people who you’d like to test the new feature

• A new feature to test

• A means of adding the conditional logic into your application

• Some criteria for determining success or value

• A mechanism for offering feedback on the new feature

You will need to select a specific group of people to test the new feature. This can be a
regular test group or a special group you’ve formed just to test this feature. The criteria
for choosing these people should be clear. The likelihood of the group to use the feature
once it is deployed should be high on your list of criteria (different features will have
different requirements). As for the second bullet point, obviously you need a new fea-
ture to test, and it should be functioning, but a few rough edges can be acceptable.

Then you’ll need to make the feature available to the people you have chosen. Condi-
tional application logic on your live site is becoming the most popular approach to
doing this. There are two reasons behind this. First, it may seem more complex to have
conditionality on your live site, but having a separate set of hardware and operations
management is also complex. Second, it means the testing will be happening as part of
the person’s normal use of the site, rather than pretend use on a test server.

Finally, you’ll need to obtain some feedback. Decide how you will determine success
for the features before you plan your feedback mechanisms. It might be that the feature

Deployment and Version Control | 293

http://blog.twitter.com/2009/04/discovery-engine-is-coming.html
http://blog.twitter.com/2009/04/discovery-engine-is-coming.html

is simply faster, or that more of something is done. Using contact lists as an example,
you might implement access to external address books as a feature. Having implemen-
ted this feature, you might look for an increase in the rate of new people being invited
and generally improved feedback on the contact management section. Obviously, each
feature will have unique criteria. You can gather qualitative feedback from your testers
via email or on a private forum, but often some quantitative data is most helpful. For
this you will need to determine a baseline measurement for the feature. A baseline
would normally consist of counts related to the feature being developed. In the address
book example, the rate of invites per user of the site per month might be one measure
for a baseline. Then, note how this changes for your group of testers.

Lots of companies take this approach to testing. For instance, in early 2009, 37signals
wrote a blog post about how it used A/B testing on five different versions of a page,
and monitored which version got the greatest number of orders (for more information
on this, see http://www.37signals.com/svn/posts/1711-design-decisions-the-new-back
pack-marketing-site).

Infrastructure and Web Operations
Now that your code is deployable, you now will need something on which to deploy
it. Early on, you can probably use a single server for everything. Many hosting accounts
will put the database as localhost on the same machine and rely on RAID for live back-
ups, with regular external backups. This does leave you vulnerable to spiky loads from
the network effect, however.

I’ll cover scaling in “Scaling and Messaging Architectures” on page 309, but for now,
it’s important to know that there is a lot to look at in terms of a good monitoring
infrastructure. Ganglia is becoming a favorite for monitoring cluster environments, and
Nagios is good for other services and general installations. Monitoring your servers is
a great idea. From simply making sure your service is up to live analysis of throughput
and cache efficiency, there is a lot to observe and improve. Hosting web applications
costs money. Using monitoring, you can ensure that you are spending less money, as
well as ready in case of downtime.

There are some interesting graphs of web operations activity (no, really) on the Flickr
group WebOps Visualizations page; this group is turning into a great place for analysis
of odd behaviors for web ops staff. The group was set up by John Allspaw, operations
manager at Flickr. He also wrote The Art of Capacity Planning (O’Reilly).

Good operations management is key to getting successful social software sites to work
well. There are many strands to this—the software build process I discussed is one of
them—but the main area is monitoring and managing the servers running your site.

294 | Chapter 16: Writing the Application

http://www.37signals.com/svn/posts/1711-design-decisions-the-new-backpack-marketing-site
http://www.37signals.com/svn/posts/1711-design-decisions-the-new-backpack-marketing-site
http://ganglia.info/
http://www.nagios.org/
http://www.flickr.com/groups/webopsviz/
http://oreilly.com/catalog/9780596518578/

Managing Operations
Good operations management has six main aspects. Paying attention to all six will help
ensure your site’s success. As your site grows, there will be many more areas to manage,
but these are good to start with:

Run multiple web servers with a reverse proxy, even if you have a single server
Using multiple web servers to run your applications means you can restart some
of them with new versions of software, leave others alone to try out different fea-
tures, or simply do rolling restarts to deploy code without any downtime. Try using
HAProxy or Nginx as a proxy and load balancer; I’ll discuss this further later in
the chapter.

Use deployment management tools to manage your servers
If you have more than one server, Puppet or Chef will help you to manage the whole
life cycle as well as different types of service. Tools such as these can create new
servers and upgrade operating systems, which can help you immensely; as I said
earlier, humans make mistakes, but tested scripts do not. This should get rid of a
lot of false bugs.

Make sure you control the libraries and software versions you use
Countless hours are lost due to live and staging environments having different
libraries installed. Tools such as Capistrano will manage this for you. Versions are
available for a variety of languages; for example, Fabric is available for Python. No
software should be deployed to live without requiring environment changes as well.

Avoid single points of failure, or at least know about them
Sometimes these are unavoidable due to the cost or sheer size of a data set, but a
single point of failure will come and bite you when you least expect it—you can
count on that. A master database is an obvious single point of failure. There is one
place that your data is written to; however, there will be other points of failure in
hardware, software, and even people.

Use caching, as it helps immensely
There is a lot of content on a social application, but given the many ways that
content is reused, coupled with privacy issues, whole pages are hard to cache.
Memcached (see “Cache, Then Shard” on page 315) is the dominant tool for con-
tent fragment caching, but many frameworks offer their own tools, which can be
easier to start with.

Have a documented backup procedure and test your backups
Avoid the sad tale of ma.gnolia (http://factoryjoe.com/blog/2009/02/16/what-really
-happened-at-magnolia-and-lessons-learned/). Filesystem corruption had insidi-
ously crept into the ma.gnolia backups, and although the live system kept going
for a while, eventually the database became corrupt and the backups failed. The
backups had not been tested. However, given that ma.gnolia started in 2005 when
good scalable hosting environments didn’t really exist, the real story is about the
difficulties of a small team doing it all, from operation management to development

Infrastructure and Web Operations | 295

http://haproxy.1wt.eu
http://nginx.net
http://reductivelabs.com/
http://wiki.opscode.com/display/chef/Home
http://www.capify.org/
http://www.nongnu.org/fab/
http://factoryjoe.com/blog/2009/02/16/what-really-happened-at-magnolia-and-lessons-learned/
http://factoryjoe.com/blog/2009/02/16/what-really-happened-at-magnolia-and-lessons-learned/

and customer support. Migrating from the initial hosting environment to a dis-
tributed system is a significant challenge for a small team.

Designing Social Applications
So far we’ve looked at the automation and management of applications, but not at
actual code implementation; let’s do that now. The behavioral aspect of an application
is embodied in the application code, be it JavaScript and Ajax or a Ruby controller.
This level of design— the design of the interaction—is as much a part of the detail that
makes an application work as the elegance of the typography:

Most people make the mistake of thinking design is what it looks like. That’s not what
we think design is. It’s not just what it looks like and feels like. Design is how it works.§

—Steve Jobs on the iPod

Steve Jobs was talking about a physical object, but one which also had a desktop ap-
plication and, in time, an online component, too. Most social applications do not have
a physical component, though external sensors are changing that. However, the ex-
pression “design is how it works” is also true for social applications. The behavior is
the important aspect that needs to be captured. What an application looks like is im-
portant, but not as important as how it works.

Using Prototypes, Not Pictures
In Chapter 7, I recommended the use of prototypes rather than sticking with flat
Photoshop mockups. I’ll reiterate that here: the sooner you can get a sense of how
something really works, the sooner you will understand whether your approach will
really work. In larger companies, the traditional model of a set of signed-off Photoshop
documents being a deliverable to a team of developers to turn into HTML and CSS still
persists. Often, this is the last glimpse the non-development team has of the product,
until all of the HTML, CSS, and application code is written. Thus, something non-
interactive is being used to lead the design of something interactive; can you see a
problem with this?

Tools such as PolyPage, a JQuery plug-in, make dynamic page states possible (see http:
//24ways.org/2008/easier-page-states-for-wireframes for background information and
http://github.com/andykent/polypage/tree/master to download it). Using PolyPage
makes it possible to mimic the logged-in and logged-out behavior of a page. Using event
handlers allows you to hide content for an even better sense of mock behavior.

One real advantage of using tools such as PolyPage and hand-built HTML is that the
code can often define the conditional logic the application code will need to use. The
designers and developers will therefore be thinking along the same lines. “Logged in

§ http://www.wired.com/gadgets/mac/commentary/cultofmac/2006/10/71956

296 | Chapter 16: Writing the Application

http://24ways.org/2008/easier-page-states-for-wireframes
http://24ways.org/2008/easier-page-states-for-wireframes
http://github.com/andykent/polypage/tree/master
http://www.wired.com/gadgets/mac/commentary/cultofmac/2006/10/71956

and has admin rights” means one view, while “not logged in” means another. This is
much better than a flat JPEG and several pages of text describing changes to represent
a single page. Tools that automatically generate code for you miss out on this level of
documentation, as they tend to care more about the position of elements on the page
in terms of code generation. Application logic is much more helpful when simply doc-
umenting in the actual prototype.

Assisting Developers with Use Cases
A frequent request from developers is a use case. This helps them to understand the
whole picture of the application rather than simply implementing a feature. Being able
to see how a new feature fits into the existing site behavior and data storage needs
means developers can make sensible refactoring decisions, rather than bolting another
feature onto the existing system. Keeping the amount of code in your application small
is a real benefit. Code requires maintenance, so the more code you have, the more time
you will spend managing the older code. Think of gardening: to get a rose to flower,
sometimes you need to prune out the older woody growth.

Use cases are also a fundamental part of the behavior-driven development approach
and are required for prototyping. The alternative is a feature-led development
approach—for instance, we need feature X; asking for feature X and not planning out
the situations in which it will be used is lazy product management. The result likely
will not be what you expected. Each role or actor in the application needs to be assessed
and have his interaction with the new feature properly articulated. These roles include
non-members, members, admins, and if necessary, members who don’t qualify for
using the feature. A use case also allows an opportunity to check the behavior with
external users of your product prior to development.

Designing in Good Behaviors
You want your site to fail gracefully. Your site should continue to work well when the
CSS fails to load, relying on good, basic HTML structure to keep running. It should
work well without images, too, as this is how blind people and search engines will
perceive it. As such, accessibility is a good trait to build into your site. Toward that
end, unobtrusive JavaScript takes the approach of layering additional behaviors on top
of a working site, such as implementing on-page editing in a new layer, as opposed to
going to a new page. The underlying HTML links and forms can do the job perfectly
well. Working from the jazzy version down to the accessible version simply never hap-
pens, as it is too much work to reimplement most of the behavior. Accessibility is not
a tick list, it is a basic approach. Jeremy Keith’s excellent article on how to keep behavior
separate from content (http://www.alistapart.com/articles/behavioralseparation) gives a
clear introduction to this (see). His book, Bulletproof Ajax, is also a good guide to the
approach.

Designing Social Applications | 297

http://www.alistapart.com/articles/behavioralseparation

Another good design element is to provide useful error pages. A 404 error page should
not just say “Not Found”; it should offer a basic sitemap and provide search function-
ality. Likewise, a 500 error page should describe how the error occurred, if appropriate.
In addition, a feedback form that goes directly to the development team can actually
be a real help in the early stages of a site’s growth. Giving your community the ability
to recover from errors and not feel like they have done something wrong is a humane
and encouraging approach, which fits well with a community application.

Your App Has Its Own Point of View
Just because your application can accommodate a particular feature doesn’t mean you
should include it; and if you have concerns about including the feature, take them
seriously. Applications should not be like Swiss army knives; they should have a focus.
Throughout this book, I have mentioned some examples of natural extension: video
added to Flickr, events added to Last.fm, and the small list of applications added to
LinkedIn.

The way Flickr chose to handle adding video to its site is worth looking at further. The
Flickr team wanted to add video in such a way that the rest of the application was not
disrupted by a medium that could have very different viewing characteristics. Limiting
video clips to 90 seconds meant the rapid browsing (flicking) experience you can have
with physical photos was not pushed aside by the more time-demanding linear video
viewing experience.

How Code Review Helps Reduce Problems
There should be a house style for implementing a feature, from application code to
visual styling. In terms of code, there should be established conventions for naming
variables, a comment style, and a preference for packaging modules. All of these should
be set in place before copious amounts of code are written. A familiar structure is a
huge help when returning to debug something months after the code was written. En-
forcing this is particularly important with new hires; ideally they should work directly
with the main team for a few months. In addition, freelancers, if used, need to appreciate
that they are creating something that has an existing set of behaviors and they must
respect this way of doing things.

Code review entails another developer checking your code to ensure that it makes sense
to her before it is committed to the repository. This process can help to maintain coding
standards and ensures that no one is writing code on her own, and thus introducing a
human single point of failure. For instance, Twitter uses http://www.review-board
.org/ to review code, but there are many other tools out there.

298 | Chapter 16: Writing the Application

http://www.review-board.org/
http://www.review-board.org/

Digg also feels strongly about code review: “Digg doesn’t allow a single
line of code to be pushed to production unless it has been peer reviewed;
thus enforcing their coding standards.”‖

Code reviews help build a clearer picture of what is and is not appropriate for the
application you are building. It also helps to transfer knowledge around your team.
People external to the team may think they are a waste of time, but their advantages lie
in ongoing support of the product. Design review is a common practice; similarly, code
review should be a standard, too.

The practice of using lead development teams and a QA team to find bugs is one that
is less common on strong social software teams. Developers know their own code and
should fix their own bugs. A policy of fixing bugs before creating new features will also
encourage a stable product. Otherwise, it is like building higher and higher on an un-
stable foundation.

The Power and Responsibility of Naming
The topic of URLs has cropped up a few times in this book, especially in Chapter 11.
Since 1996, Tim Berners-Lee has been saying not to include current technological de-
tails in your URLs. There is no need for anyone to know you are running Perl or to
know the folder structure of your application. URLs have been defined by Tim Berners-
Lee, Roy Fielding, and Larry Masinter in RFC 3986 (see http://tools.ietf.org/html/
rfc3986).

The task is instead to define the names you want to have for your objects and people
and services, and then to map these to the scripts or code modules that comprise your
application. An approach that is too “bare metal” leads to fragility. The following is a
brittle URL:

specific-server.service.com/cgi-bin/subfolder/scriptname.cgi?param1=17&content=
etc

These next examples are good persistent URLs:

service.com/profile/profilename
service.com/objecttype/objectid/verb/qualifier

You need to address four key aspects in URL design:

Ownership
Most objects in a social application are owned by someone, and the owner should
be identified in the URL hierarchy; for example, /zzgavin/places/.

‖ https://twitter.com/daveman692/statuses/1245472774

How Code Review Helps Reduce Problems | 299

http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
https://twitter.com/daveman692/statuses/1245472774

Object reference
The next aspect is the social object on your site, be it photographs, trips, places,
or music. These can have meaningful names if the namespace for them is small
enough. Generally, they will have a unique key referencing the object. This should
be something resilient to database provider changes and something you can recal-
culate in case of software changes.

Action
These are the tasks that someone on your site can perform; e.g., add, delete, or
search for something. There are two often-used styles: make the verbs have a com-
mon URL, such as /trip/add/id, or make the verbs an extension of the private space
for a user, such as /profileid/add/. These URLs represent unique personal actions,
like adding someone to a profile or joining a group, and are unlikely to be shared
with other people. They should also be close to your API in terms of their design.

Qualifier
Clusters or tags combine terms that refine a search space. They refer to a non-
specific group of objects. For instance, the photos on Flickr tagged “sunflower”
will change over time, but the concept will stay the same. Qualifiers, objects, and
people are frequently used in concert. For instance, /photos/gavinbell/tags/london
refers to my photos of London, and /photos/tags/london refers to everyone’s pic-
tures of London.

In the Ruby on Rails framework, there is good support for mapping resources and
code. The routing functions define URL paths and map these to controller actions
and parameters. Similar approaches exist in other frameworks.

One aspect of URL design that sometimes throws people off is aggregation views, es-
pecially private home pages. If your site design supports a main home page and a per-
sonal home page, the private view often uses /me for mapping. The /me URL invokes
the aggregation view for the person who is logged in. For instance, Twitter
uses /home for this page. The controller or module invoked by this page determines
what to include on this page. There is no need to include noise such as user ID, active
modules, last visited time, or chosen template style in these kinds of URLs. Further-
more, you should store all of this information in a database so that you can simply
retrieve it and, if necessary, cache it. You can take a similar approach for any news-type
page: the request to access the page and the logged-in person’s identity (which can be
determined by a session cookie) are all that you need.

Your aim should be to have the simplest URL structure you can devise, ideally one that
has a sentence-like structure so that people can understand it. Giving something a URL
with unintelligible codes and code-level directives on what templates to include says
you care more about your developers than you do the people on your site.

300 | Chapter 16: Writing the Application

Being RESTful
Much time is spent in developer circles arguing over Roy T. Fielding’s PhD dissertation,
“Architectural Styles and the Design of Network-based Software Architectures” (http:
//www.ics.uci.edu/~fielding/pubs/dissertation/top.htm), which defines the REST (REp-
resentational State Transfer) approach. It is not closely tied to HTTP, though HTTP is
a good example of REST. (Fielding also cowrote the HTTP specification.)

REST implies a focus on resources or, in our case, social objects. To do things with
these resources, you make URL-based queries on them with as many URL paths as
needed per the number of resources or nouns. The REST approach sets out some criteria
for being RESTful. The model is client/server-based and it is stateless in operation, in
that state is not maintained from one transaction to the next. RESTful systems support
caching and layering, because each transaction knows only about the resource it needs
to operate on and the action it needs to perform. The representation of the resource
must be understandable by the system processing the transaction. The representation
and action are encoded in the URLs for your web application. REST is not specific to
web applications. The principles can be applied to other systems, but we will explore
REST in the context of web applications for the rest of the book.

Unlike REST, Remote Procedure Calls (RPCs) are verb-based. There will be a single
RPC endpoint for your application, and you pass it the equivalent of a function call
and some parameters. Compare this with REST where the resources and actions are
spread across the URL space for the application. The Atom Publishing Protocol is a
good example of a pure RESTful protocol; so is Amazon’s S3 storage service.

Some great APIs on the Web are largely RPC-based. Flickr is a good example. Confusion
comes when developers try to offer an RPC- and a REST-based approach from a com-
mon code base. This is still a current area of development and discussion, with Roy
Fielding helping to clarify what he intended in his article at http://roy.gbiv.com/untan
gled/2008/rest-apis-must-be-hypertext-driven.

Why is this important? RESTful approaches make it easier to build new applications
against existing object stores (your application). REST is largely self-documenting, so
there is less complexity with it. RPC is like building a semiprivate application on top
of the Web; REST is like extending the Web. Given that social applications are moving
the Web into the hands of the people who use it, REST is a good fit. The Web is made
of things (my photos are part of Flickr, for instance), so “take this thing and do some-
thing” is a better match than the service-based approach of RPC. The do something can
be as simple as view it, or as powerful as delete it.

Leonard Richardson and Sam Ruby wrote a good book on the subject: RESTful Web
Services (O’Reilly). We’ll look more at REST in Chapter 17.

How Code Review Helps Reduce Problems | 301

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.atomenabled.org/developers/protocol/
http://aws.amazon.com/s3/
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://oreilly.com/catalog/9780596529260/
http://oreilly.com/catalog/9780596529260/

Beyond the Web Interface, Please
The Web is not the only interface to think about. Email is perfectly good for sending
and receiving information. Instant Messaging (IM) interfaces such as AIM, Jabber, and
Twitter also work well as input and for IM output interfaces. Mobile platforms have
risen strongly on the back of the success of the iPhone and other Internet first phones.
The old approaches of templates embedded in code make this multiplatform delivery
very hard to achieve. CSS and HTML are examples of separating content from styling,
and recent approaches using JavaScript separate behavior from content.

The Model-View-Controller (MVC) paradigm harks back many years to the language
Smalltalk, which was created at Xerox PARC in the 1970s. The paradigm separates the
primary aspects of an application into three layers concerned with behavior, activity,
and data representation. MVC has had a new lease of life on the Web through the
success of the Ruby on Rails development framework. MVC separates content from
behavior and display.

The MVC approach suits social applications very well, given the potential for multiple
interfaces to access content. Separating behavior from content modeling simplifies the
code structure. It is arguably the dominant paradigm for building web applications
today. MVC also underlies the Cocoa framework for Mac OS X and iPhone application
development. Developing applications in this manner allows the Model layer to persist
across implementations, with the View layer changing depending on the type of device.
An example might be a web application that has an iPhone application interface.

If you want to abstract the data even further from the view, you should
explore the material on creating APIs in Chapter 17.

i18n, L10n, and Their Friend, UTF-8
This book is written in English, so I’m going to take a guess and say that the primary
interface of your application will be in English. If not, stick with me through the next
couple of sentences and try not to smirk (too much). English, be it American or British,
Australian or even Canadian, has a big hidden problem: it is all too easy to be lax at
representing information. English can be represented in 7-bit ASCII. In the 1980s, mo-
dem companies even tried to squeeze more speed out of telephone lines by packing
eight 7-bit encoded characters into seven 8-bit bytes. This issue plagues development
languages as the core string-handling libraries are often based on English. When other
languages are processed, odd results happen. There are ways to fix these problems, and
they are not that difficult. A computer language can take 10–20 years to mature and
evolve, so these early ASCII-only issues are still around for some languages.

302 | Chapter 16: Writing the Application

First, store and present all your content as UTF-8, or UTF-16 if you need to deal with
non-Roman character sets. Second, ensure that you completely understand which
character encoding is being used in all your libraries, web servers, and development
languages. Third, do not try to launch in more than one language. See Joel Spolsky’s
useful article on Unicode (http://www.joelonsoftware.com/articles/Unicode.html) for a
thorough understanding of the relationships between character sets, encodings, display
glyphs, and the Web. No, really, go and read it. As Joel says, it is not that difficult, and
you’ll feel better about the rest of the world.

There are several common abbreviations for the process of running an application in
multiple languages. Globalization (g11n) sums up the processes of internationalization
(i18n) and the subsequent localization (L10n). The process of making your application
international-ready is represented by the i18n work. This work can start as soon as you
do; developing processes, such as ensuring that you use UTF-8, is good housekeeping.
Focus on building an awesome application for one country or region first. The com-
munity should drive your planning, and they will let you know when they need a version
in a specific language.

The key is to introduce as many i18n practices as you can where they don’t significantly
slow you down. Start extracting/marking up strings when you have only 10 templates.
Then introduce the markup to support these strings as language variants as a standard
part of your development approach early on, if you have time to do this kind of work.
It will save a huge amount of work if you ever do localize. However, if doing this means
you need to stop work on other features for a month to think about i18n prior to launch,
maybe launch first and see what the community demand turns out to be.

The process of i18n involves finding all the developer- and user-facing strings in your
application and replacing them with a reference to the appropriate language version.
This means you will have libraries of en_us and en_uk or pt_br (Brazilian Portuguese)
for your application (creating these language libraries is not something to deal with
prior to launch, get your product out there first). Both Flickr and Movable Type use
this approach, as does Apple for its Cocoa framework. The L10n work then concerns
making the application local to a country and language.

Simon Batistoni from Flickr has a couple of good presentations on the
internationalization of Flickr; see http://hitherto.net/talk_files/Ni_Hao
_Monde.pdf and http://hitherto.net/talk_files/sxsw_2008_flickr_intl.pdf.

Here is a short checklist of g11n issues to consider:

• Use international-friendly functions for things such as date formatting (e.g., use
“strftime,” not “date” in PHP).

Beyond the Web Interface, Please | 303

http://www.joelonsoftware.com/articles/Unicode.html
http://hitherto.net/talk_files/Ni_Hao_Monde.pdf
http://hitherto.net/talk_files/Ni_Hao_Monde.pdf
http://hitherto.net/talk_files/sxsw_2008_flickr_intl.pdf

• Handle time zones for your users, as not everything happens in GMT. Also consider
daylight saving time or summertime hour changes, because they happen at different
times of the year in different countries.

• Do not hardcode currency amounts into your template. Also, do not assume a
single currency or payment system will be used.

• Be aware that languages vary in their compactness. English is quite a compact
language in terms of space taken to express the same meaning. German, by com-
parison, takes more space and has long compound nouns. Arabic languages flow
from right to left, and so on. Each of these points affects screen layouts.

• Remember that translation costs money and time; once you have localized, you
need to consider how you launch new features, ideally in each language at the same
time. However, this means you are extending the launch process. Launching sep-
arately makes maintenance much harder and compromises the user experience.

Running your product in other languages will give you access to other markets, but this
benefit comes with a cost. Do pay attention to the aforementioned concerns so that
you can localize easily later on, but don’t compromise your initial application devel-
opment and launch. You need a successful business first to be in a position to support
other languages.

Bug Tracking and Issue Management
A critical aspect of the application life cycle is your ability to document problems and
resolve them. Typically, these are called bugs, but a bug is a fickle thing. A developer
saying “It works on my machine” but other people finding the bug is probably a sign
of inconsistent development environments across different machines. To know where
this inconsistency lies, you need to be able to accurately re-create the development
environment. This means everything from the operating system version to installed
modules for each language to web server parameters and proxies.

After establishing a good environment, you can find real bugs, of which there are several
different types. The real skill is in determining what is going wrong and prioritizing the
fix. The following list shows some common classes of bugs:

Crashers
Some sort of input or behavior makes your application crash. Having a good stack
trace is invaluable in being able to determine what went wrong. Ruby on Rails does
this quite well compared to, say, Perl. Dumping the stack trace into an email and
sending it to the development team is more helpful than appending a one-line entry
to the web server error log.

Browser incompatibilities
You can decide which of these you will fix. Supporting Safari 3, Firefox 3, and only
Internet Explorer 7 (IE7) and later is becoming much more common. Your

304 | Chapter 16: Writing the Application

community access statistics will help determine whether this is an option. The cost
of supporting the non-standards–based behavior of IE6 can be significant.

Privacy breaches
Hopefully, you won’t have one of these. Maintaining the security of private user
data from credit card details and passwords to private posts is important. It is a
trust situation. Testing for security flaws is hard, as it requires a nasty mindset. If
you do have a privacy breach, apologize to the affected user first. For more infor-
mation, see “Handling Security” on page 307.

Non-standard behavior complaints
These are a simpler class of bugs. A calendar file that doesn’t work properly with
a specific calendar application is a good example. You might be following the
specification document, but the external client application doesn’t, so you have to
choose whether or not to support it.

The previous classes of bugs are pretty clear-cut: the application either doesn’t work
or it does. Virtually everything beyond this is a variant on a feature change or a matter
of opinion. Software applications are complex entities and humans are inconsistent
beings, which make for misunderstandings and confusion, even on close-knit teams.
“Determining When a Bug Is a Bug” on page 380 will take another look at how this
works over the life cycle of your application.

Tracking Tools
Software teams can have their momentum rapidly depleted by lots of bug fixing, par-
ticularly if it is all across the application. Each change will require a context switch to
rethink how the code was designed the last time and what has happened since. A con-
text switch is expensive in terms of time. Reacquainting oneself with old code is seen
as a non-task by non-developers.

Minimizing context switching will mean your software development team is more pro-
ductive. Issue management software (bug tracking as it is often called) helps tremen-
dously. This is an obvious idea, and as such dozens of products are available to solve
this problem for you.

Being able to link the issue tracker to the application project management tool and the
code repository is a very useful capability. The ability to raise an issue, have it assigned
to a feature set, and tie it into a code release gives a lot of transparency to the develop-
ment process. Questions such as “Does the widget branch resolve issues 235 and 452
with the current deploy 1.2?” should be discoverable from a web interface, not from
code analysis.

There are more mature tools with good user interfaces for centralized code repositories.
Subversion support in particular is quite strong with tools such as JIRA, FogBugz, and
Trac. Web-based bug tracking systems such as Lighthouse are also popular; these tend
to be combined with repository hosting accounts. The move to distributed code repo-

Bug Tracking and Issue Management | 305

http://trac.edgewall.org/
http://www.lighthouseapp.com/

sitories residing on Mercurial or Git creates complicated issue tracking despite bringing
its own advantages, but TicGit seems like a promising candidate for Git-based reposi-
tories.

Prioritizing Issues
There are different ways to figure out what to deal with and what to leave in the tracker.
Of course, a simple system is much easier than a complex one, but complex systems
can evolve accidentally. A priority system of 1, 2, and 3 can be used to manage work.
However, a common weakness with numeric ratings is that everything ends up bunched
up as a 1.

Another approach is to use the MoSCoW approach from the Dynamic Systems Devel-
opment Method, another agile software development method. This gives tasks a rating
from Must, through Should, down to Could (if there is time), and finally to Will not (this
time, but Would like in the future). This approach works well with some teams as the
levels are more understandable than a simple numeric rating. Which model you use
will depend on your team.

A further popular approach is to use urgent, important, and routine as your labels.
Urgent is used only for crashing bugs; all other work stops until the problem is fixed.
Important is reserved for main new features and bugs that you need to deal with.
Everything else is Routine. This model puts clean code ahead of new functionality,
which should mean a more stable and bug-free system. However, this can be hard to
achieve in many companies, where new stuff trumps bugs, as new stuff is shinier. A
policy of “the feature isn’t complete until there are no bugs logged” can be effective,
but communicating that “a feature launched but is not done” also has its complexities.

No application will have a clean sheet for every feature; sometimes you need to be able
to mark something as “won’t fix” and move on. Balancing the need to fix or extend old
features with the need to create new ones is a real challenge when building web appli-
cations. Just as with web browser support, there are decisions to be made about how
much to invest in any feature. Applications need to be seen as a complete ecology; you
need to tend to all of them equally, which can mean leaving known issues while you
work on something else.

Differentiating Bugs from Feature Requests
Being able to determine whether the reporter of a bug is saying “this doesn’t work for
me” or “I don’t like how this works” is a key developer skill. Feature requests mas-
querading as bug requests snarl application development, particularly if the bugs get
priority in your workflow. Development methodologies that enforce one-month-at-a-
time planning approaches mitigate these requests to some degree. Your community
will be both a huge help and a demanding bunch. They can be helpful in verifying bugs
as a general issue and clarifying misconceptions in how something really works. They’ll

306 | Chapter 16: Writing the Application

http://wiki.github.com/schacon/ticgit

also pound you with their ideas about how something should work and how it is a tiny
change and will make your application/service the most useful product. These will
primarily be about issues of new functionality that you do not offer, requests to bring
back something you’ve stopped doing, or usability issues. Usability issues are worth
paying attention to, as they can point out something you’ve misunderstood.

Depending on your market position and audience, you might want to have a public
road map (such as Vimeo) or a public bug tracker (such as Six Apart with Movable
Type and Twitter with its API). This is particularly relevant if you have a large developer
community. The ability for a developer to raise a ticket and annotate a bug, ideally with
an isolated test case, can be invaluable. Virtually all open source applications have these
as public assets for the community. Commercial endeavors are obviously more careful
around this, hence the frequent split between the API, which is shared, and the appli-
cation, which is semiprivate. The more pressing bugs for a social application are around
the API and security, so sharing these can be helpful.

Handling Security
The topic of security could be a whole book in itself—several, in fact. Security is hard
to do well; most frameworks and tools are set up to make things easy to hook up and
implement, with security left as an afterthought. This might sound surprising, but
switching to look at your site from the outside is hard. There are already enough context
switches from the user point of view, to the developer using your API, and to your own
company point of view. Taking on the viewpoint of a hacker trying to break your site
is tricky.

However, it is important, particularly early on when your code is small. Alex Payne
from Twitter describes the position well:

I suggested to the team that we do a full internal security audit. Stop all work, context
switch to Bad Guy Mode, find issues, fix them. I wish I could say that we’ve done that
audit in its entirety, but the demands of a growing product supported by a tiny team
overshadowed its priority.#

In 2009, there was password hash compromise on the music service Spotify. The pass-
word hashes for Spotify were reverse-engineered so that someone could attempt to
guess your password if he knew your username. Security across your API, and in this
case the access protocol from a desktop application, is just as important as security on
your own site. This API was not public, but it did not stop people from trying to access
it.

Beyond hacking account access, many other attacks can happen as well. For instance,
Chapter 12 looked at password management. In addition, people can try to redirect
your community to a misleading site or trick them into deleting content—so-called
clickjacking. SQL injection attacks are also common. The approach here is to escape

#http://al3x.net/2009/01/12/the-thing-about-security.html

Bug Tracking and Issue Management | 307

http://www.spotify.com/blog/archives/2009/03/04/spotify-security-notice/
http://al3x.net/2009/01/12/the-thing-about-security.html

every item of content you receive, and to unescape only the content you really want to
display. Whitelisting, whereby you create a list of the HTML that you will allow, is the
only approach that you can feel comfortable with; filtering is doomed, given the clev-
erness and amount of free time people are willing to spend carrying out these kinds of
attacks. The MySpace worm relied on combining and executing composed
JavaScript—for example, “inne”+“rHTML.” The hack relies on executing JavaScript
so that the strings are combined to form the HTML word “innerHTML,” which can
then allow for executable code, where normally the string innerHTML would be filtered
out. This kind of combination attack is almost impossible to filter out. (See http://namb
.la/popular/tech.html for the technical details of the MySpace worm.)

Escaping means not treating the input text as entered. For example, an
angle bracket will not be represented as an angle bracket when used as
an HTML entity, and will be escaped to 〈 or represented as
u"\u3008" in Python. This means it will not be parsed as HTML code.

Cross-site scripting attacks will use any editable field as a potential weakness for
launching an attack. For instance, the CSS fields of the Twitter profile have been used
to create a self-propagating worm (http://dcortesi.com/2009/04/11/twitter-stalkdaily
-worm-postmortem/). The Twitter attack, like the MySpace attack, shows the severity
of the network effect on social applications. They can spread very rapidly. The worm
had a heavy performance impact on MySpace, in particular.

Simon Willison gives a good summary of website security at http://simonwillison.net/
2008/talks/head-horror/. Particular techniques to note include ensuring that you know
the source of form submissions, that you use a token that is generated on your site for
logged-in users, and that you process forms only if this unique token per user is passed
along with the form. Finally, make sure the token is secure.

Site security is painstaking work, but making it part of the regular deployment cycle
will help you avoid the horror of a vast security audit at some future point, right after
you’ve been hacked. Unfortunately, most companies leave security until then, as they
are too busy making the service thrive. Simply making your service available is a lot of
work, especially if you have high growth rates, but security is still important. It would
be wise to make sure that your entire development team has a good understanding of
the current security threats that exist on the Web. Securing your site is the responsibility
of all of your developers, from those on the client-side to those working on the API and
database code.

Rapid User Interfaces
A responsive interface is important in many areas of the Web; on a social application,
where someone might view dozens of pages in a session, it is a requirement. Social
applications do a lot, though. The web page is a resource in terms of REST. It may be

308 | Chapter 16: Writing the Application

http://namb.la/popular/tech.html
http://namb.la/popular/tech.html
http://dcortesi.com/2009/04/11/twitter-stalkdaily-worm-postmortem/
http://dcortesi.com/2009/04/11/twitter-stalkdaily-worm-postmortem/
http://simonwillison.net/2008/talks/head-horror/
http://simonwillison.net/2008/talks/head-horror/

laden with microformats, plus there is the actual content and the actions the viewer
can take with this content. These pages are complex, and so are the mechanisms used
to generate them. Performance to the user is critical, so “queue everything else” is an
approach that came into the mainstream in late 2008 and early 2009. Rapid page de-
livery matters, too, as “Making Your Code Green and Fast” on page 325 shows. The
behaviors triggered by your application matter, as well. First let’s look at how we create
new functionality.

Rapid Prototyping
Much of this book has focused on the visual user interface to the application, as this is
the primary aspect for the majority of your audience. Getting to that stage means mak-
ing the interface, but also making the code that implements the functionality.

Using the programming language console for code-level prototyping is a very flexible
way of approaching prototyping. It works well for scripting languages such as Python
and Ruby; compiled languages do not have this option, however. Being able to build
up your objects and then extend their behavior is akin to developing the API first. It is
a cheap way to experiment with possible options rather than waiting until there is a
user interface in place. You are more likely to make rapid discoveries in this kind of
environment, and then you can take these back to the product development cycle as a
“we could also do this” offering, often within a day or two of proposing the idea.

Scaling and Messaging Architectures
Network effects make social software hard to scale up in a simple manner. Features
such as asymmetric following mean one person’s activity can result in thousands of
updates flowing through your systems. Privacy can make cache strategies inefficient,
too.

The common asymmetric follow model of social relationships can create harsh scaling
issues. If @stephenfry updates Twitter, nearly 400,000 people get his update. That is
a lot of activity to manage, much more than a single individual can normally create on
a site such as eBay, Amazon, or a news site. Privacy makes this asymmetry even more
complicated. As we discussed in Chapter 8 discussed, privacy affects search, updates
to river of news flows, tagging, and other features. It is also hard on caching.

Figure 16-1 shows two visualizations of following in a social network. Supporting
asymmetric follows will allow for a more connected network. The black node on the
left has three connections, all two-way. On the right, it has 11 connections, but again
only 3 of them are two-way. Scaling is a more significant problem on the right.

On the left is a purely symmetric follow arrangement; on the right is the same pattern
with one-way or asymmetric follows allowed. The asymmetric version shows a much
richer level of connections per node. The network is more highly connected.

Scaling and Messaging Architectures | 309

Earlier in this chapter, I mentioned Enterprise Integration Patterns; it has a fantastic
array of messaging patterns that you can study and apply to your application. It is
common now to see a social application as a series of interacting applications rather
than as a single monolithic block of code. The book describes 65 different patterns for
letting applications operate in a message-passing manner.

A simple approach to application design is to do the minimum amount you need to get
control back to the person who requested the page, and then do the rest of the updates
asynchronously via a queue of tasks. Queues are really at the heart of making your
application more parallel, and less single-path and linear in nature. You still need to
process the queue, and if it fills faster than you can process it, you have gained nothing.
Most social applications, however, do have a quieter period. At some point, it will be
nighttime for your application; commonly this will be when it is daytime across the
Pacific, as the population density here is much lower than elsewhere on Earth.

Ajax Helps with Scaling
Earlier approaches to web development stem largely from older Common Gateway
Interface (CGI)-based ideas of web servers invoking server applications to perform a

Figure 16-1. Symmetric and asymmetric following patterns in a social application; the symmetric
pattern on the left allows only two-way symmetric relationships and the asymmetric pattern on the
right allows asymmetric relationships

310 | Chapter 16: Writing the Application

task and return some output. Typically, these applications pull data from a database,
find an appropriate template, generate an entirely new HTML page, and return this
page to the user.

We have moved beyond this to a world of XMLHttpRequest-based applications, which
return packets of data to client-side applications that then show this update to the
reader. Just the data rather than an entire newly rendered page is sent over the wire.
Moving a small packet of data rather than a whole page makes for better interaction
styles. This reduction in turnaround time for user interactions leads to Ajax-powered
applications placing much higher response time requirements on your applications.
People have a natural tendency to relax if a whole-page refresh is taking place. If a single
element is changing, they expect immediacy, like they would get from a desktop ap-
plication. However, given that the volume of data being moved is smaller, it means an
overall easing of scaling issues. Moving a few hundred bytes of data requires less effort
than a full-page download.

Queuing Non-Visible Updates
Ajax helps with page interactions, but much of what you need to do in a social appli-
cation is not visible. When someone uploads a piece of content to a site, the primary
activity is to show her that the content has arrived. It is not necessary to update the
followers’ pages, any tag pages, and so on. All of these activities can be safely queued
and done within a short time from the time of upload. Assessing what can be taken out
of the direct user-driven activity loop is a first step in making your applications more
scalable using queuing. Figure 16-2 illustrates the linear do everything model and the
queuing model. Each segment with an arrowhead represents a specific application task;
the Queued model returns control to the the user much sooner. The following section
illustrates some examples of application-based queuing.

Figure 16-2. Queued versus linear approaches for processing events following a user interaction with
the site

Scaling and Messaging Architectures | 311

In the figure, each arrow represents a task that follows the user event. In the queued
model, four tasks are queued for later processing and control returns to the user sooner.

Real Time Versus Near Time
The queuing stage in web development determines which processes must happen in
real time when a user submits a request to a web application and which processes must
happen soon afterward. The closest analogy is the SQL transaction: what can happen
outside the transaction that the HTTP request triggers?

In social applications, everything outside the remit of the XMLHttpRequest is in near time.
The only thing that needs to happen in real time is ensuring that the data sent by the
web browser is stored appropriately, and that the person on the other end sees her
information updated. Everything else—from implied updates, to logging, to marking
caches as dirty—can happen asynchronously. This means your users receive responses
much more rapidly. An example might help clarify this idea.

When Twitter was in the early phase of development (with 50,000 users or so) Evan
Williams, the CEO, had 1,500 followers, and they were sending a lot of updates over
SMS or text messages. Twitter was constructed to send all the SMS messages and then
return the Twitter user an “all done” message, but this was taking more than 40 sec-
onds, so Twitter implemented a queuing system that guaranteed the sending of the
SMS, but outside of the HTTP request loop.

At Nature, we use TheSchwartz queuing system, supplied as part of Movable Type, to
queue updates to an internal search service; pass new comments to our in-house social
application, Nature Network; and deal with failure situations for registration against
the main internal identity management system. The loose coupling that comes from
queues, and the ability to easily retry after a failure, makes queuing very attractive, at
the cost of another system to manage.

Going back to Twitter, its developers initially thought it was going to be a
microblogging service, so the choice of Rails as a Content Management System
(CMS) solution was appropriate. However, when people started using Twitter as a real-
time conversation service, the original platform choice was no longer appropriate. If
Twitter had used another framework to get to market, would it have arrived too late?
We will never know, but each framework has its costs and benefits; there is no perfect
language or framework. Twitter’s recent migration to Scala for the underlying messag-
ing infrastructure is a better fit in terms of real-time requirements. For an interesting
technical review of Twitter’s move from Ruby to Scala, see http://www.artima.com/
scalazine/articles/twitter_on_scala.html.

Polling Versus Pushing
One common argument concerns the direction in which updates should flow. Many
aspects of the Internet operate in a polling model: a service checks to see whether there

312 | Chapter 16: Writing the Application

http://www.artima.com/scalazine/articles/twitter_on_scala.html
http://www.artima.com/scalazine/articles/twitter_on_scala.html

is an update for it, perhaps pulling over an RSS or Atom feed. This is fine for small
numbers of feeds, but when one service is polling for hundreds of feeds, it becomes
inefficient for both parties. Using a queue to push content over HTTP to a remote
interface is an attractive alternative. The recipient application does not waste time
checking for content when there is none, but it does need to be able to respond to the
incoming push content, as this will come from an external agent. This model is very
appropriate for activity stream updates from internal applications or with partner
applications.

Publish/subscribe (pubsub) is a common implementation of this model. It allows a
publisher to announce updates to subscribers as they happen; subscribers do not poll
for activity. (See Enterprise Integration Patterns for more about this pattern.) The Pub
SubHubbub protocol is an open source approach to pubsub over HTTP, which allows
for push-based content delivery over the Internet.

For internal queuing, products such as Apache ActiveMQ and RabbitMQ allow for
private message queuing between known applications. They are not really appropriate
for largescale public API usage, but they are invaluable for private use. Using one of
these products means that you will have another platform to maintain, but the benefits
of these queuing stores are worth it. One issue to be aware of is queue failure. Some of
these products support in-memory queues only, so items will be lost in case of power
failure.

XMPP Messaging
An option for Internet-based messaging is Extensible Messaging and Presence Protocol
(XMPP; http://xmpp.org/about/), which is an Internet-wide messaging system.* The full
specification is quite complex, and creating a server for it can be a lot of work. However,
much of the client side of XMPP has been neatly encapsulated in the form of language
modules—for example, Jabber::Simple for Ruby, Smack for Java, and many others.

The argument in favor of XMPP is that implementing to a shared messaging system is
less work than writing an interface for each application separately. Each application
has one outbound and one inbound interface. The outbound interface sends all updates
to a central server or linked servers, and the inbound interface subscribes to certain
updates from one of these servers. This is particularly relevant when some of the con-
sumers of the messages are not on your network.

Outbound updates contain Atom-formatted content about who created the update,
how it was created, the actual content, and any tags or media files associated with the
content. Inbound subscriptions would receive content matching certain subscribed
actions or subscribed tags, or from certain people. Atom is a data format (http://tools

* For more information on XMPP, check out these sources: http://www.slideshare.net/rabble/beyond-rest
-building-data-services-with-xmpp-pubsub and http://www.loiclemeur.com/english/2008/12/xmpp-pubsub
-aka.html.

Scaling and Messaging Architectures | 313

http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.1.html
http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.1.html
http://activemq.apache.org/
http://www.rabbitmq.com/
http://xmpp.org/about/
http://tools.ietf.org/html/rfc4287
http://www.slideshare.net/rabble/beyond-rest-building-data-services-with-xmpp-pubsub
http://www.slideshare.net/rabble/beyond-rest-building-data-services-with-xmpp-pubsub
http://www.loiclemeur.com/english/2008/12/xmpp-pubsub-aka.html
http://www.loiclemeur.com/english/2008/12/xmpp-pubsub-aka.html

.ietf.org/html/rfc4287) that was developed to address some of the weaknesses of RSS.
XMPP forms the basis of the Google Wave, a new communications platform launched
in 2009, that Google proposed as an open extension to the XMPP protocol (see http://
www.waveprotocol.org for details of its implementation).

Using Atom or RSS feeds to subscribe to these kinds of activities is CPU-intensive. The
sending application has to send one message once, as opposed to generating separate
dynamic feeds for every requesting application. At some point, it is impossible to gen-
erate the RSS fast enough to ensure a 100% complete feed. XMPP supports a 100%
delivery approach to content, so it will retry in case of failure. The basic HTTP protocol
supports no such thing, though PubSubHubbub aims to.

An asynchronous model of intra-application communication will take less time to
maintain and use less energy. For instance, Twitter’s power bill dropped once it adopted
queuing. Dopplr, meanwhile, is built on an asynchronous architecture to allow it to
scale efficiently. Whether you choose internal message queuing, a PubSubHubbub ap-
proach, or XMPP will depend on your developer audience and product needs.

External Processing: Scaling on the Fly and by the Batch
If you take the queuing approach to handling some aspects of your community inter-
action, you will end up with some queued updates that you can handle in batches.
Sending out notification emails or SMS messages about activity is a good example.
Processing statistics is another one, and we’ll look at that in this section.

Processing individual access statistics for a person is not work that your main web
server(s) should be doing. Having servers spinning simply to process this kind of back-
ground task seems like a waste of money, too. Services such as Amazon EC2 (Elastic
Compute Cloud) and others give you a spare set of servers to use as you need. Batch
processing data sets and processing additional load at peak times is a perfect usage.

The overview at http://agiletesting.blogspot.com/2009/04/experiences-de
ploying-large-scale.html is a great firsthand account of using EC2 to deal
with scaling.

You can use batch processing only if you have already designed in parallel stages, as
described earlier. You need to have broken out of the user interaction loop to have
something to process. If everything is expected to happen in real time only, you can
only use these services as additional web servers under a round-robin proxy, which is
fine, but they are not designed to be used continuously in this manner based on the
service-level agreement (SLA) from Amazon. When you have only a single box at a
hosting company, it might seem foolish to spend time designing for a multisystem
architecture. However, even single servers have multiple CPU cores, so designing for
parallel steps makes sense, even at the algorithm level.

314 | Chapter 16: Writing the Application

http://tools.ietf.org/html/rfc4287
http://www.waveprotocol.org
http://www.waveprotocol.org
http://agiletesting.blogspot.com/2009/04/experiences-deploying-large-scale.html
http://agiletesting.blogspot.com/2009/04/experiences-deploying-large-scale.html

One service that can immediately make use of multiple cores is Hadoop, an open source
implementation of the Google Map Reduce data processing architecture. Hadoop
relies on multiple machines and multiple cores to distribute processing of data in par-
allel. Hadoop is being used for a map generation toolkit called Maps from Scratch, put
together by Stamen Design. Even more useful to social software applications is the
Apache Lucene project Mahout, which builds a machine learning engine on top of a
Hadoop cluster using content stored in Lucene. Machine learning involves processing
large volumes of information by a computer to train an algorithm or discover patterns.
In “Machine Learning and Big Data Sets,” I will cover machine learning in greater detail.
Services such as Amazon Elastic Cloud, as its Hadoop product is called, are cost-pro-
hibitive to own, but renting time on them is feasible. Hadoop is a distributed computing
platform based on an approach called map/reduce. The basic concept is to break hard
problems down into small parallel steps (the map phase) and then combine all the
subanswers (the reduce phase) to produce the final answer. Many search and filtering
problems are very suitable for this approach.

Performance Testing
Scaling is an interesting area, but how do you know whether you are using what you
have effectively? Testing with high loads without real data is difficult. You can fake
connection load testing using tools such as Apache Bench, but generating large amounts
of pretend-community-generated content is a real challenge. Performance testers need
to be careful in this area; it is too easy to generate spurious results based on mock data.
However, timing each subsystem and finding the hotspots is time well spent, as single
points of failure will generally make themselves known when you have high loads and
can be difficult to predict. Much of the scaling technology relies on doing as much as
possible in memory, so any process that eats up memory can be a problem.

Languages Don’t Scale
It is what you do with languages that counts, but you should also pick the language
that suits your application area. Many factors contribute to language choice: developer
familiarity, library availability, ease of prototyping, and ease of deployment all need to
be factored in. Choosing which scripting language to use is always difficult. The Yahoo!
home page is written in PHP, for example; it would be faster in C, but much harder to
change. The infrastructure you place around your applications is generally much more
relevant. Pick a poor caching approach, and it won’t matter which language you choose.

Cache, Then Shard
The simplest approach to development is a single application deployment talking to a
local database on a single Apache instance with no caching. There are millions of ap-
plications like this in the world. Most installs of blogging or message board software

Scaling and Messaging Architectures | 315

http://www.mapsfromscratch.com/

get along quite happily like this, for example. Adding memcached and a reverse proxy
can help a lot, even on the same hardware. It also becomes easier to move to multiple
machines with services such as this. All of this is focused on the delivery of content
beyond your database and avoiding hitting the database for frequently accessed
content.

Products such as memcached are almost a default now on large social applications,
delivering regularly accessed content straight from memory without troubling your
database. In many cases, these products will cache application-generated fragments,
thereby saving your application servers, too.

At some point, you are likely to run up against the limitations of your database server.
Multiple slaves and a master database for writing is a common scaling option. Clients
read from the slaves and write to the master. At this level of scaling, you probably have
several application servers, multiple web servers handling incoming connections, and
your database master/slave setup, plus machines for memcached and monitoring. You
can go a very long way with this approach, as most accesses are reads, not writes.

Eventually, though, you’ll hit the limits of your writable master. This is quite a hard
limit; prior to this all scaling involves relatively small-scale changes to how an appli-
cation can retrieve an item of content. To help avoid this hard limit, check the cache
before checking the database. You will also need to change the basic application logic
because content needs to be stored in different places. A single machine can no longer
hold all relationships. You can split up the database, but not across joins.

Sharding the database is the next approach. Sharding works by spreading the writes
across multiple servers; in effect, horizontally scaling the master write server. For in-
stance, instead of keeping all the user records in a single table, you keep records A–M
on one database and N–Z on a second database. Now your application logic needs to
know which database to write to on the basis of the account in question. You can split
things up further, by also sharding content types.

Latency is another issue that can affect your data systems. Once you have multiple
geographic data centers, the time between when a write occurs and when the written
data becomes available can be long enough that a page refresh will show the disconti-
nuity. Latency is really outside the scope of this book, but the systems that Facebook
and others are developing to manage this issue are interesting to read about, and many
of them are being released as open source products.

For more information on database scaling approaches, see Cal Henderson’s book,
Building Scalable Web Sites (O’Reilly).

Fast and Light Data Storage
Much of the data that we store in our databases does not need to be in a relational store.
A simple key/value storage product might suffice for some activities. These are blazingly
fast in comparison to a relational database such as MySQL, and they are very well suited

316 | Chapter 16: Writing the Application

http://www.danga.com/memcached/
http://oreilly.com/catalog/9780596102357/

to gathering data for processing later. Products such as Tokyo Cabinet can store 1
million records in less than one second. Architecting your application so that you can
use a key/value storage product such as this makes a lot of sense in terms of scaling. If
your data is generally retrieved by primary keys with few joins, this is a definite possi-
bility. Richard Jones from Last.fm wrote a good review of current 2009 options, avail-
able at http://www.metabrew.com/article/anti-rdbms-a-list-of-distributed-key-value
-stores/.

Implementing Search
As discussed in Chapter 13, Search is critical to your site, and it is also a system that
you will change and replace over time as your needs grow and the content in your site
settles down. Providing for a simple, direct query on some MySQL table fields is often
good enough for the first few months. Note that the default minimum search string
length on MySQL is four characters, so you might want to change this.

Why does search not stay as originally designed? It is hard to predict what sort of
content you will get on your site, even if you know the kind of content you want to
acquire. Which metadata aspects are the ones that your community will care about? In
terms of search design, I’ll assume that you know the context of a search match. You
can determine who wrote the item of content and whether this content is an event, a
comment, or a photo description. Make sure you use this contextual information. Re-
turning search results that show contextual information such as ownership and that
enrich the display with the photo or date of the event are much more meaningful and
useful than simple plain-text lists.

Search volume will determine when to replace your simple query on MySQL (or similar)
with a dedicated search product, perhaps based on Lucene or one of that family, such
as Solr. You should have enough search traffic to warrant the extra effort that main-
taining a separate archive of content and another application requires. Perhaps the
search traffic is impacting the efficiency of the main database, or your API traffic is
growing and needs access to a separate server.

A lot of the focus in social web applications is on the browsing experience, but many
aspects of it are search-driven. In fact, much of your API is a search product. There is,
however, a difference between searching by person and searching by tags and content.
Search by person on your application should present an interface for activity based on
the relationships between the searcher and the person returned in the search results.
In this regard, you should show any relationship present between people and offer a
means to create a relationship. This activity based on the context model should sound
familiar from Chapter 7. You can extend this to other metadata-rich aspects of your
application as well (e.g., place). The aim is to turn search results pages into something
that recognizes the person who is searching and offers her contextually relevant activ-
ities to perform.

Implementing Search | 317

http://tokyocabinet.sourceforge.net/
http://www.metabrew.com/article/anti-rdbms-a-list-of-distributed-key-value-stores/
http://www.metabrew.com/article/anti-rdbms-a-list-of-distributed-key-value-stores/
http://lucene.apache.org/

Identity and Management of User Data
There are three common models to account creation: register with an email address;
use another site to provide an identity (e.g., Twitter provides identities to several ap-
plications); and use OpenID, which is a more recent option. Each of these has strengths
and weaknesses.

Using an email and password is by far the most common approach. Almost everyone
on the Internet has an email address and is capable of verifying an account by clicking
on a link in an email. However, this approach has disadvantages too: your users will
have to remember another password for all of the various accounts they have on the
Web, or their security will be compromised if they use the same password everywhere.

Creating a secure password is a difficult task. Implementing a green-amber-red grading
system with corresponding weak-fair-strong indications for the strength of a password
helps a lot. Simple alphanumeric passwords are much easier to remember, but pass-
words with only letters and numbers and no punctuation characters are less secure
Checking passwords against a dictionary is also useful; words that appear in a diction-
ary are easier to guess, and hackers can easily work through a list of these.

Also, ensuring that your login system does not allow repeated automated guesses at
passwords is a good idea. Allowing only 3 tries and then enforcing a 10-minute wait
will mean a possible 432 tries per day, which is plenty. Allowing 1 per second equals
86,400 attempts per day (which would be two days to try the entire Oxford English
Dictionary). So, passwords that are dictionary words do weaken security, but there are
things you can do to mitigate this.

Using another site to provide verification of identity (proxying) is also a good approach,
especially if you are a satellite of a larger site. An example of using another source for
managing identity is Foodfeed, which takes identity from Twitter. FriendFeed also has
started using this approach using OAuth, as we discussed in Chapter 13.

The most recent approach to identity management is OpenID, an open protocol. With
OpenID, a single digital identity can be used across multiple sites on the Internet, as
opposed to creating a new, different identity at each site. Individuals can obtain an
OpenID from many sources (most large Internet companies offer them). We’ll talk
more about OpenID in the following section.

OpenID for Identity
OpenID turns identity into a web-addressable resource. Instead of an email, you obtain
a URL that represents you. The majority of identities come from large existing com-
panies such as AOL, Yahoo!, and Six Apart. You log in to the host site and use this
identity to access other sites on the Internet. One password and one common profile
are intended to make life simpler. Many people will choose to have more than one
OpenID, perhaps separating their work and personal lives.

318 | Chapter 16: Writing the Application

http://openid.net/

Use of OpenID does not mean an account is not created; it merely changes the cre-
dentials used to access a site. As site owner, you can request further details, such as an
avatar image via Attribute Exchange. Attribute Exchange allows a service to which
someone has just logged in to request additional profile details from the OpenID pro-
vider, enabling richer profiles on the Internet.

Using the term OpenID as a brand to prompt the user does not help with registration,
as it is largely unfamiliar. Saying “Use your OpenID to log in” will be meaningful only
to the small community who care about the ability to use OpenID. However, saying
“Use your Yahoo! ID or your LiveJournal or WordPress identity to access this site” will
help dramatically. Keep the OpenID name around for fellow developers who are fa-
miliar with such things, but for the majority of people, use the branding they are already
familiar with. “Log in with Gmail” is a direction users understand. The Google OpenID
and OAuth hybrid have shown fantastic success rates (for more information, go to http:
//www.readwriteweb.com/archives/comcast_property_sees_92_success_rate_openid
.php).

For technical details on Google’s use of the OpenID and OAuth hybrid,
see https://sites.google.com/site/oauthgoog/UXFedLogin.

The next phase in OpenID support might come from web browser companies. Sup-
porting OpenID in the browser would be a tremendous advantage (http://radar.oreilly
.com/2008/12/getting-openid-into-the-browse.html). An individual would be able to log
into her browser and access existing services and create accounts to new services with-
out having to think about the technical details involved.

What to Ask for on Registration
Account creation is the first step in a person’s relationship with you, so don’t put a
multipage form in his way. Grab the minimum amount of information he needs to
participate in your community—usually login details, a nickname or real name, and
password reminder details. Once he becomes a more active user, you can prompt him
to provide more information.

This gradual registration model will feel completely familiar to people who regularly
use the Web and explore new sites. But for people on marketing and advertising teams,
it is very scary. The idea that you let an opportunity pass to collect information is hard
for them to appreciate, so build prompts into your application that allow people to fill
in further details, or link some features to other sections of your application with more
complete information. For many sites, this will not be necessary, but in the more pro-
fessional areas of social software, a wealth of actively maintained profiles means the
site can continue growing. For instance, the LinkedIn approach of showing the

Identity and Management of User Data | 319

http://openid.net/specs/openid-attribute-exchange-1_0.html
http://www.readwriteweb.com/archives/comcast_property_sees_92_success_rate_openid.php
http://www.readwriteweb.com/archives/comcast_property_sees_92_success_rate_openid.php
http://www.readwriteweb.com/archives/comcast_property_sees_92_success_rate_openid.php
https://sites.google.com/site/oauthgoog/UXFedLogin
http://radar.oreilly.com/2008/12/getting-openid-into-the-browse.html
http://radar.oreilly.com/2008/12/getting-openid-into-the-browse.html

percentage a profile is complete is a nice visual approach to encouraging completion,
while avoiding irritating prompts.

When a User Chooses to Leave
There are many reasons why people will just stop using your service, but they’ll usually
only delete their accounts if they are annoyed with you. They might also be accounts
that you have chosen to delete as a result of moderating content.

Deleted accounts need to be handled carefully. Retaining the integrity of conversations
is important, as we explored in Chapter 15. Simply deleting every trace of a person
damages previous conversations. Here are some guidelines to help you handle the
process when users leave your site or delete their accounts:

• Make it easy for the person to find the “Delete my account” link. Don’t make it an
elaborate four- or five-stage process involving a phone call. Gain explicit confir-
mation that the person wants to delete his account. However, two “Are you sure?”
prompts are a good idea.

• Make it easy for him to get a file containing all of his content—defining “all” is
slightly complex, however. Certainly, all the primary content he contributed is
valid, and his contacts on the site are definitely a good idea, but every reply he
posted on a message board probably doesn’t need to be included.

• Retain his comments on other people’s content, as removing them would disrupt
the remaining conversation threads.

• Annotate and unlink his avatar. Adding “[deleted]” makes it clear that the person
is no longer an active member.

• Decide whether account deletion is final. Some sites treat deletion as a lapsed sub-
scription, but most sites consider the delete action final.

• Decide whether to make the identifier available to another user after a specified
period of time (e.g., six months or a year). Many sites issue identifiers once and do
not allow reuse, whereas some sites let active users claim dormant or deleted ac-
counts. There are arguments on both sides, but regardless of which approach you
take, have a clear, consistent policy.

Admin Users
Many sites create admin accounts as an extension of the normal user account model.
These are special users with additional powers. This model is very common and has its
benefits: there is a single pool of users, and it is simple to promote people to give them
extra powers. A more secure approach is to separate user accounts from staff accounts
so that every person has a normal user account, allowing admin staff to use the site in
exactly the same way the community does. The staff members who run the site get an
extra account that uses a separate authentication system, perhaps linked to your

320 | Chapter 16: Writing the Application

company authentication system. This account gives them access to administration
powers beyond those available to normal users of the site.

This two-account system makes it easier for your staff to contribute and be social on
the site, without the big badge of “STAFF” following them around. It also makes it
much easier to deal with staff members leaving and new people joining the company.
Any staff activity will come from the staff account. It is better to flag the content con-
tributed by staff members than to have the staff flag associated with a person and then
be associated with the content. The connection is that staff content has been created,
not that Jane is a staff member and she created some content.

The most common place for this to be visible is on any discussion forums, particularly
company-run forums for problems, ideas, and discussion of your product. It needs to
be clear to your own staff and to people reading contributions when people are acting
as staff members. This is important because some of your new employees will come
from your community. If you simply allow them to use their existing community ac-
count and flag it as a staff account now that they are employees, you need to deal with
their previous activity on the site. Using a separate staff account makes this much
clearer.

Finally, separating staff and user accounts makes them less prone to a dictionary or
other automated attack. The authentication endpoint for staff accounts will be different
from the normal one and not available over an API. Also, you can add hardware tokens
such as the common RSA key fobs to secure these accounts even further if you wish.

Make sure your staff accounts are secure. Twitter had a dictionary attack
on a staff member’s account; see http://blog.wired.com/27bstroke6/
2009/01/professed-twitt.html for details.

Accessing Content via OAuth
Identity is managed via OpenID or email address and password, as noted earlier, but
what about access to the content associated with an identity? The photos or
microblog posts are the content in these services. These social objects are the reason
for the services to exist. Simple identity is not really that interesting on its own. The
content is the exciting part. OAuth is the protocol that gives fine-grained access to
content for third-party applications.

The strongest advantage to OAuth is that it avoids the password antipattern. There is
no point at which the third party can impersonate you. The identity credentials that
OAuth grants are permission-based to the service, not whole-identity-based. Explicit
read and write permissions are granted. The permission to read photos or to write
photos is at stake; global account access to the photos is never granted. With OAuth,
you give a third party permission to read and/or update content on your behalf, but
not to impersonate you. Also, this permission is held as a detail in your account with

Identity and Management of User Data | 321

http://blog.wired.com/27bstroke6/2009/01/professed-twitt.html
http://blog.wired.com/27bstroke6/2009/01/professed-twitt.html

each service. It is possible to see which third-party applications have access to which
data for a service.

Figure 16-3 shows that I have granted the Dopplr and Fireball applications read and
write access to my data within Fire Eagle. Compare this to a system based on email and
passwords. You will have no indication of which services have access to your data, and
any one of them could impersonate you because they hold the full identity credentials
for the Twitter or Dopplr account, and they use the same password for API and personal
account access. Also, when you change the password on your account—say, you forget
it—all of these services are locked out. OAuth resolves all of these problems.

Figure 16-3. Fire Eagle showing applications that have been granted access and the level of access
granted

The cost is an additional step in the sign-up process for external applications. OAuth
mandates that permission to access content is issued only on the service website. For
instance, I need to be logged in to Fire Eagle to give Dopplr access to my content. This
is commonly called token-based authentication.

This is not a completely new idea. Since it launched, Flickr has used a similar model
for accessing photos. Similarly, the Movable Type blogging system has used a separate
API password since version 3, for both the XML-RPC and the AtomPub interfaces. The
edit profile page for Movable Type, shown in Figure 16-4, shows the normal account

322 | Chapter 16: Writing the Application

password and, below it, the reveal link for the API password. (I’ve obscured my email
address and username.)

Figure 16-4. Moveable Type Pro Edit Profile page showing the separate web services password at the
bottom

OAuth uses the following flow:

1. The OAuth service requests access to account information using its consumer key
and a consumer secret. These are generic, but they initiate the request. The OAuth
service responds with an OAuth token and a token secret, also known as a request
token.

2. OAuth takes the user to the service, where she may need to sign in. The user can
authorize your application’s access to her data.

3. The user grants access, which takes her back to your site with an access token. This
can be used to get content.

The flow for desktop applications and from the iPhone is not quite as smooth. The
iPhone is helped by the application’s ability to define specific application URLs—for
example, tweetie://, which will launch the named application. Check out http://fireeagle
.yahoo.net/developer/documentation/oauth_best_practice for good advice on creating
mobile OAuth implementations.

Identity and Management of User Data | 323

http://fireeagle.yahoo.net/developer/documentation/oauth_best_practice
http://fireeagle.yahoo.net/developer/documentation/oauth_best_practice

Hiding the service-based authorization is not a good idea. From the desktop, the process
is similar, but it requires an extra step:

1. The user launches the desktop application.

2. He clicks on the “Request permission” link, which takes him to the service pro-
vider’s website. He will log in if necessary.

3. The user grants permission and then manually goes back to the desktop application
and clicks another link there. This last click fetches the new OAuth access token.

Twitter recently moved over to OAuth access for the API, and there is much grumbling
on the API mailing list about the perceived complexity that entailed, particularly from
desktop application developers. It requires one more step, and the gains are mainly for
the security of the person using the application, not for the developer. However, this
process is about as complex as email verification when signing up with a new service.
When a website sends out a verification email, for instance, often the person needs to
switch applications and go to a desktop mail application to receive the appropriate
email. He clicks on this link and is taken back to the web browser.

The conversations on Simon Willison’s short post at http://simonwillison.net/2009/Jan/
2/adactio/ show some of the debate around OAuth in early 2009. It is not a silver bullet,
but it does make a lot of sense to use it instead of username/password.

OAuth makes the Web a more secure place, putting control is in the right place: with
the user of the service. It also stops developers from taking advantage of having access
to full credentials. On Twitter, for example, there was a recurrent practice of sending
a Twitter message about the service without the user’s permission, so other users would
see “X is using third-party application Y; try it out.” With OAuth, this would be im-
possible unless you had explicitly given permission to send Twitter messages. For much
more technical detail on OAuth , see http://www.slideshare.net/kellan/advanced-oauth
-wrangling.

Federation
It is possible that the social web will end up with a larger number of federated instances
as opposed to the single dominant player approach we have at the moment. Facebook
may be the largest social network, but it is far from the only one. Increasing speciali-
zation and the desire for interoperability will encourage federation.

The mobile or cell phone market is a good example of what might happen. At first, it
was hard to place a call from one network to another. Consumer demand led to this
becoming much easier. Now it is not even noted as an issue—any mobile phone in the
world can call any other phone.

324 | Chapter 16: Writing the Application

http://simonwillison.net/2009/Jan/2/adactio/
http://simonwillison.net/2009/Jan/2/adactio/
http://www.slideshare.net/kellan/advanced-oauth-wrangling
http://www.slideshare.net/kellan/advanced-oauth-wrangling

In terms of identity management, the various Facebook Connect or Google Connect
services are the start of a trend toward interoperability. I think this will move toward
activity-based interoperability, too. Tools such as ma.gnolia’s planned M2 for book-
mark sharing, and Identi.ca (based on a proposed open microblogging protocol), show
that there is at least a developer desire for federated systems. Similarly, the Adium IM
client federates the various IM protocols.

Google bought Jaiku and has made the application both open source (http://jaikido
.blogspot.com/blog/2009/03/jaikuengine-is-now-open-source.html) and a model for a
federated microblogging and activity aggregation. Jyri Engeström wrote about it at the
time:

For a while now, many in the microblogging community have been wondering how to
add contacts and exchange updates and comments across services.

For instance, some of my friends are on Jaiku, others are on Twitter, and a third group
use FriendFeed. How could I follow everyone without having to deal with creating and
managing an account on all three?†

Federation of services on the Internet is a real issue. However, it does not have a firm
specification yet, such as OAuth. It is also a more complex problem, with both hard
technical and commercial problems to solve. How do we take the Internet and make
it service-agnostic and still retain commercial value in services that are largely free to
use? There is a parallel between microblogging now and the early mobile phone net-
works. Initially, it was only possible to make a call on the same service, as now it is only
possible to message within Twitter. This was resolved for mobile phone network op-
erators by accounting incoming and outgoing minutes and SMS messages. Financial
settlements resolved any discrepancies. For a federated microblogging future, there are
no minutes to charge for or handsets to sell, as in the telecommunications world.

Making Your Code Green and Fast
Running web applications uses energy, that much should be obvious. Reducing the
amount of energy your application uses should lower your hosting bill and reduce the
environmental impact of your company. This is more of an issue at a larger scale, but
unless you start thinking about the average costs per person for a page display early in
the development of your application, you will have a lot of refactoring to do later. This
may not seem like a major issue at first glance, but it was a significant enough issue for
Google that it designed its own server to reduce the cost per search. Much social soft-
ware has the same low revenue per click. Building your own server farm is out of most
people’s league; however, there is lots of potential to reduce costs in other ways. Some
analysis from Google on the environmental impact of search requests shows that about

† http://www.zengestrom.com/blog/2008/12/foreign-friends-from-a-servicecentric-to-an-objectcentric
-social-web.html

Making Your Code Green and Fast | 325

http://wiki.ma.gnolia.org/M2-Product-Charter
http://www.adiumx.com/
http://jaikido.blogspot.com/blog/2009/03/jaikuengine-is-now-open-source.html
http://jaikido.blogspot.com/blog/2009/03/jaikuengine-is-now-open-source.html
http://www.zengestrom.com/blog/2008/12/foreign-friends-from-a-servicecentric-to-an-objectcentric-social-web.html
http://www.zengestrom.com/blog/2008/12/foreign-friends-from-a-servicecentric-to-an-objectcentric-social-web.html

0.2g of CO2 is produced per request. The energy required to produce a glass of orange
juice is equal to roughly 1,000 search requests in terms of its impact:

Early on, there was an emphasis on the dollar per (search) query, Hoelzle said. We were
forced to focus. Revenue per query is very low.‡

—Urs Hoelzle, Google’s vice president of operations

Fortunately, reducing energy usage also overlaps with creating a user experience that
feels quick and responsive. Steve Souders’s book High Performance Web Sites (O’Reilly)
gives 14 guidelines for making sites feel faster. You can find an overview of the guide-
lines on the Yahoo! developer website (http://developer.yahoo.com/performance/rules
.html). These guidelines rest on the principle that concentrating on purely optimizing
backend application code resulting in HTML generation is a flawed approach. It rep-
resents only a tiny fraction of the time taken for a page to become visible (see Fig-
ure 16-5, which shows the tiny amount of time it takes for HTML to download com-
pared to the time it takes for the page components to download). Ensuring that content
is cached appropriately and that you are minimizing the number of files that must be
downloaded per page are primary ideas in this approach.

The YSlow Firefox plug-in that Steve Souders created while at Yahoo! is an essential
tool in making your pages more energy-efficient and faster to display. The queuing
approaches also help. Doing as much as possible asynchronously in a queue means that
control returns to the user more quickly. It is then possible to batch-process some of
the remaining tasks. Propagation of updates is a task that needs to run immediately;
otherwise, you will fall behind with the constant flow of updates. But overview statistics
or non-user aggregation processes are not needed in real time, so they can be run over-
night during quiet times. Another, more widely used approach is Amazon’s EC2. Why
run your own additional servers when you can rent time on someone else’s? This ap-
proach is particularly suitable for batch processes, but it can also work as part of a
round-robin server group for peak loads. The aim here is to level off your own power
consumption and reduce the number of machines you have running idle, and, of course,
lowered energy usage means less cost per user, which helps with profitability.

Building Admin Tools and Gleaning Collective Intelligence
Without a good set of administration tools you will have no idea what is happening on
your site. I don’t just mean site statistics tools such as Google Analytics, though some
kind of statistics tool is essential. I mean the tools to manage and monitor activity on
your site in terms of the core social activity, not just page impressions. You need tools
to determine the rate of new sign-ups, creation of objects, and status of members. You
also need tools to block and ban, as discussed in Chapter 15.

‡ http://news.cnet.com/8301-1001_3-10209580-92.html

326 | Chapter 16: Writing the Application

http://oreilly.com/catalog/9780596529307/
http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/yslow/
http://news.cnet.com/8301-1001_3-10209580-92.html

Too often these tools are left to the scraps of time available post-launch. The ongoing
quest for more features or the inevitable bug fixing diverts time and attention from
making good tools that your community never sees, and even though it may never see
them, they are essential for running a good site, so their presence is important. Be aware
that you can skew community behavior simply by counting something and displaying
it in public. These analysis tools can also encourage you to value what you are counting
and miss other changes in your community behavior that you are not counting. If you
count it, you will tend to value it; be careful that you do not get led by the numbers.

Figure 16-5. Downloading http://www.yahoo.com in Internet Explorer (from Steve Souders, used
with permission)

Building Admin Tools and Gleaning Collective Intelligence | 327

http://www.yahoo.com

There are different styles for these tools. Some sites use a single portal that gives access
to everything; others use a private page behind every object on the site (e.g., /person/
zzgavin/<admin> or photo/asdaq3r/<admin>). Some simply add an admin data layer
on top of the usual view of the page. Appending “admin” to the URL is enough, as long
as you have permission to see admin pages.

A mixture of approaches works. A complex view, such as an events listing, can benefit
from having admin tools layered on top of it to delete content, rather than re-create the
view. Supporting hackable URLs for admin access to people and content means you
do not need to create a search interface to (re)find the item to do the admin task. Yet,
often a summary interface is what you need to get a sense of what is happening on the
site. On top of this, you will want the operations interfaces to monitor performances
and systems. It is rare to see admin applications; they tend to be private and obviously
full of personal data. Do not design a detailed admin application prior to getting some
real data into your system. You can build the wrong thing too easily. Build an admin
interface section by section based on growth.

The design patterns for these kinds of administration systems are quite opaque and
hidden, because they deal with company confidential data, so they are rarely public.
Some basic patterns do exist.

An overlay system on top of the social objects and profile pages, as noted earlier, com-
bined with a summary stats page is a good start. Much of your admin work will be
focused on people, so a tool that can pull up detailed data about a user will be very
useful. Time using site, any payment information, number of contacts, counts of ac-
tivity by content type, and actions are helpful to give a sense of overall activity. People
will come to your attention for what they have recently done, so showing a sample of
their recent sitewide activity will be helpful. Any explicit moderation activity should
be clearly called out. Overall summary data about the general behavior of your appli-
cation can be essential in understanding what is changing on your site. The next two
sections outline the sort of data analysis tools you will need to create to do this well.

Social Network Analysis
There are many questions to ask in terms of what statistics to collect—what kinds of
data to collect for users and objects, what tools to use to track and visualize the data,
and so on. Capturing data early for use much later is an important trick. Timestamping
your activities is also important. Knowing when something happened, be it a tagging
or a comment, means you can see when it happened a second time, rather than just
knowing you have two tags for an object.

Many social network analysis tools are available. These tools need data for analysis in
the form of lists of friends and, in many cases, time data around friendship formation.
This information is useful in modeling what sorts of relationships you have on your
site. Discovering that you have 10% of your community at a low level of activity (“follow
a few people,” “post irregularly,” “came via a previous promotion”) means you can

328 | Chapter 16: Writing the Application

develop functionality to encourage them to participate more. Without the metadata it
would be harder to see this constituency.

Machine Learning and Big Data Sets
How do you determine what you need to capture to explore the overall community
behavior? The seemingly magical side of your applications comes from machine learn-
ing, which is a form of artificial intelligence. Learning algorithms are applied to large
volumes of data, and they can be trained to make predictions or find patterns in the
data. Toby Segaran’s Programming Collective Intelligence (O’Reilly) takes relatively
simple machine learning techniques and shows how to create tools such as a recom-
mendation engine, a price comparison tool, and various clustering tools. Many of these
tools are starting to be used within social applications.

Collecting all of this data means you know a lot about your community. Given the right
tools, you can use the data to find out even more and then create a space to explore it.
Flickr did this with its interestingness feature a few years ago. Recommendations from
music services such as Last.fm and Spotify can also be very appealing. Look at Toby
Segaran’s book for a very readable and useful guide to machine learning.

Machine learning can be very CPU-intensive once you have enough data to make it
useful. So, running these processes on services such as EC2 is a good match. This is
exactly the kind of batch process you might run daily or weekly. This kind of machine
learning analysis—primarily for recommendations or log analysis—is becoming very
common. Large-scale users of Hadoop include Facebook with 1.3 petabytes of data,
Last.fm with 85 terabytes, and Yahoo!, which has 10,000 machines running Ha-
doop.§ A good platform for exploring machine learning is the Mahout product that
runs on top of a Hadoop cluster. Mahout has implemented several core machine learn-
ing algorithms, and Hadoop provides a computational environment in which to run
these processes. In addition, Amazon provides its Elastic Map Reduce service, which,
like EC2, allows for intermittent access.

Reputation Systems
The means by which you maintain a list of who is interesting and relevant to each person
on your site is a difficult problem, but one that can be informed by machine learning
tools. Getting beyond simply collecting social objects and listing them in collections is
a good aim for social applications. Reputation and recommendation systems are an
important aspect of this work. However, there is a great potential for these to turn into
a game, which can have an unhealthy aspect because people will try to stay at the top
of any list that you make. At the time of this writing, Bryce Glass and Randy Farmer
were in the process of writing Building Reputation Systems (http://buildingreputation

§ http://wikis.sun.com/download/attachments/38208497/Hadoop-Primer.pdf

Building Admin Tools and Gleaning Collective Intelligence | 329

http://oreilly.com/catalog/9780596529321/
http://buildingreputation.com
http://wikis.sun.com/download/attachments/38208497/Hadoop-Primer.pdf

.com), which reviews approaches to creating and maintaining reputation profiles in
depth. They are defining a grammar for referencing how reputation systems operate,
which looks to be a very useful approach.

Summary
You have spent time building a site that is small and good. It feels coherent and makes
sense to the product team. Now is the time to get your friends in to kick the tires a bit
and see what they think. This soft-launch private alpha phase is really important. It is
a second chance to see whether the site makes sense to more than the development
team. You no doubt have already shown it to a few people, but the reaction of a few
dozen people coming in via IM or email will give you a stronger sense of whether the
site makes sense without you beside them. Don’t be afraid of cutting features if the
feedback is strongly negative on some of it.

Mostly, the feedback will be about wording and positioning, but among this will be a
sense of what they think you have made. This is an important aspect to listen for in
private alpha feedback. Hopefully what they think and what you think will be closely
aligned; if not, look again at how you are portraying your main functionality.

Good social applications do a few things well. They offer a well-supported API and
have a polished, coherent user interface. Support for the primary social objects is of
utmost importance, and the community features are obvious and clear. Assess your
development plans and make sure you can see how you will create something that
people will love.

330 | Chapter 16: Writing the Application

http://buildingreputation.com

CHAPTER 17

Building APIs, Integration, and the
Rest of the Web

No man is an island, entire of itself.

—John Donne, Meditation XVII

“We need to be on the Web” was the cry of the 1990s. Some smart companies realized
there was more to this than choosing a hosting provider and whether to use Microsoft
IIS or Apache. For example, Google and Amazon are deeply enmeshed with the Inter-
net, with links to their services and pages on many pages other than their own. Having
a website is a good start to engaging with your community, but intentionally limiting
a website to just pages consumable by humans misses out on the real potential of the
Web. Today, a website is more than a brochure; it is a data repository with multiple
interfaces to the content. Facebook and other closed sites have gradually opened up
over the past year. For instance, the New York Times has gone from having a registration
barrier to having a real-time API for its content. Being merely on the Internet is no longer
enough.

“On the Internet” Versus “In the Internet”
So far this book has mainly focused on creating your own application. In this chapter,
we will look at how to integrate your application with the other services your company
might own and with the rest of the Internet. Much of this additional functionality comes
from what are commonly called application programming interfaces. These APIs are the
machine-facing interfaces for your application. Other software will depend on them.
They can be arguably more important than your user interface on your website. APIs
can do many things for your product; one of the most noticeable is spread awareness
of your product and links to it across the Internet.

Google’s AdSense ads are seemingly everywhere. Many sites use Google Search to pro-
vide search services. Similarly, many people link to Amazon’s pages as their first point

331

of reference for a book. Both of these examples do have a financial motivation behind
the linking practice, but regardless they have widespread coverage on the Internet for
Amazon and Google far from their own sites. The API-led services that both companies
offer show the value in allowing some of your content to be reused by others. Amazon
was probably the first widely used web API.

Social applications such as Twitter and Flickr have detailed public APIs, and as such
their API usage dwarfs the normal HTML page accesses for these companies. In March
2009, Twitter’s traffic was 10% to 20% web-driven and the rest was API-driven.* Re-
cently, the Guardian newspaper built a range of API and data services (http://www
.guardian.co.uk/open-platform/) with which it aims to broaden its online reach. Matt
McAlister (head of the Guardian Developer Network) described this mission to build
API and data services as “weaving the Guardian into the fabric of the Web.” This is a
good description of what an API and a liberal policy on content reuse can offer. While
the Guardian’s offering is not social software, much of what it offers will be included
in other social applications, showing that content publishers can also have a hand in
the social web through their own content. The Guardian also has an active community
on its site, but unlike the New York Times (http://developer.nytimes.com/), the former
is not making the user-contributed content available via its APIs. Both stances are ap-
propriate choices, however.

Making Your Place Within the Internet
Once you grasp that your site is part of the connected whole of the Internet (something
I hope you did much earlier in this book), then you need to see which pieces of your
site can connect to others on the Internet. This covers both outgoing and incoming
uses. Common areas for incoming uses are the contacts APIs mentioned earlier in
Chapter 14. Automating the process of allowing people to bring and find their friends
on a new site helps to increase your membership and makes the site more useful for
these new members.

This integration has a wider footprint than you might initially imagine. It spreads into
the choice of external data sets upon which you build your application. Choosing the
Yahoo! WOE (Where on Earth) identifiers for geographic locations will make any fu-
ture linkup with Flickr or Upcoming much easier. Other sites use people’s Twitter IDs
as a means of jumpstarting the identity framework for their own applications; for ex-
ample, http://zzgavin.foodfeed.us/ and http://www.fluidinfo.com/terry/2009/01/24/flu
iddb-domain-names-available-early-and-free-for-twitter-users/.

* These figures come from notes (http://gojko.net/2009/03/16/qcon-london-2009-upgrading-twitter-without
-service-disruptions/) on a presentation by Evan Weaver from Twitter (http://blog.evanweaver.com/articles/
2009/03/13/qcon-presentation/).

332 | Chapter 17: Building APIs, Integration, and the Rest of the Web

http://www.guardian.co.uk/open-platform/
http://www.guardian.co.uk/open-platform/
http://developer.nytimes.com/
http://zzgavin.foodfeed.us/
http://www.fluidinfo.com/terry/2009/01/24/fluiddb-domain-names-available-early-and-free-for-twitter-users/
http://www.fluidinfo.com/terry/2009/01/24/fluiddb-domain-names-available-early-and-free-for-twitter-users/
http://gojko.net/2009/03/16/qcon-london-2009-upgrading-twitter-without-service-disruptions/
http://gojko.net/2009/03/16/qcon-london-2009-upgrading-twitter-without-service-disruptions/
http://blog.evanweaver.com/articles/2009/03/13/qcon-presentation/
http://blog.evanweaver.com/articles/2009/03/13/qcon-presentation/

A final example is using the hCard provided through the microformat on another site
to simplify the new account creation process on your site. The Get Satisfaction example
from Figure 14-1 illustrated this concept.

By building on the behaviors and data formats commonly used on the Internet, you are
working with the its affordances rather than against them. The hub-and-spoke model
commonly used as a simple model of how the Internet works becomes more tightly
interlinked if everyone uses these approaches. (In case the hub-and-spoke model is new
to you, here’s a quick primer. If you are only linked, you are a spoke; if you link to other
people, you can become a hub. The model is simplistic, as it usually looks at only a
small subset of the Web; the reality has many more hubs than are typically drawn.)

Why an API?
Earlier I said an API is a software interface to your site. Why would you make one of
these? To answer this question, I’ll give you an example. How would you get an image
posted to Flickr onto a blog you run without an API?

Without an API, you would need to manually find the right size image and either copy
it to your blog server and create the HTML to link to it, or figure out the HTML to link
to the image hosted on Flickr’s servers. This might be easy for most people reading this
book, but it’s much harder for the majority of people who use Flickr and have a blog.

Happily, Flickr is able to use the common weblog API services that virtually all
blog software implements to support the simple process of selecting an image and the
blog to post it to, as shown in Figure 17-1.

Taking this a step further, many people write blog posts in a desktop application.
Figure 17-2 shows the Media Manager tool from MarsEdit. Without a photo access
API from Flickr, it would be hard to take an image you own on Flickr and post it to
your blog from the desktop application.

In these examples, the APIs provide ease of use for the end user of your product, but
there is a layer above this for people who are making other products based on your
tools. The APIs that the author of MarsEdit uses to find the images is the one that this
chapter is about.

There are, in fact, several different types of APIs that you might create:

• One that allows end users to access your product through an alternative interface

• One that might be commercially privileged

• One that is aimed purely at developers for testing their applications

• One that allows a developer to build her own application

• One that might allow another service partner to integrate with your products

Before deciding which type of API to create, you need to think about who you are
making an API for and which activities you are supporting by creating one.

Why an API? | 333

Exposing Your Content to Search from the Internet
One of the most useful ways to make an API is to wrap an API layer around your content
search services. While I was writing this chapter, I received a Twitter message showing
that my tweet mentioning the British Library had been included in a blog post.† Perhaps
this is a trivial example, but without the API to make the aggregation simple, the
inclusion would never have happened. Content search available from outside your own
website is a very powerful tool for increasing your audience and making your content
much more useful to other people. However, there are significant issues in terms of
how you make this content available, particularly if you have a high rate of new content
creation. We’ll look at these issues later in this chapter.

Running Services, Not Sites
An API is the first step toward your company being able to run services and not just
sites. Along with this comes a need for good terms of service and a potential model for
revenue sharing, or at least an understanding that such a model might be implemented.
Either the content is yours, or it belongs to your community members and as the site
owner it is your responsibility to encourage respect for their wishes. For instance, Flickr
allows individuals to license their content under the Creative Commons licenses in
addition to the default of All Rights Reserved, which gives users a greater degree of

Figure 17-1. The Flickr “Blog this photo” posting service

† http://looceefir.wordpress.com/2009/03/24/aggregating-british-library-tweets/

334 | Chapter 17: Building APIs, Integration, and the Rest of the Web

http://looceefir.wordpress.com/2009/03/24/aggregating-british-library-tweets/

freedom in expressing the kinds of reuse they want to allow. Flickr echoes this in its
search interface (see Figure 17-3) and in its APIs (http://www.flickr.com/services/api/
flickr.photos.licenses.getInfo.html).

Figure 17-3. Creative Commons search options from the Flickr advanced search page

Being Open Is Good
Being more open than your competitors is one approach to gaining an advantage over
their products. Imagine Amazon with a restrictive use policy concerning its ASIN iden-
tifiers. (These are the product identifiers that Amazon uses, and they are part of each
URL for a product.) Until recently, the changing URLs of many newspapers made even
linking to their content difficult, as the link would break after a few days once the
content moved into the paid archive area. An API can be a company strategy; let others
embrace and extend your application or your content. The BBC, for instance, has been

Figure 17-2. MarsEdit Media Manager showing its easy access to images hosted on Flickr

Being Open Is Good | 335

http://www.flickr.com/services/api/flickr.photos.licenses.getInfo.html
http://www.flickr.com/services/api/flickr.photos.licenses.getInfo.html

taking the latter approach with its program information, and recently it rebuilt its
identity management system around OpenSocial as opposed to the closed source be-
spoke (custom-made) code that was there (http://www.bbc.co.uk/ontologies/pro
grammes/2009-02-20.shtml). Having people build applications or reuse content against
your services gives your company more opportunities to be seen.

Arguing for Your API Internally
Creating an application with an API will allow you to integrate it with others, as we
looked at previously. However, you will need to consider other kinds of integration.
For instance, if you are an already existing company, there will be many software
systems—from registration to payment management to content production—to con-
sider. Social software is often the first new thing these older applications will have to
integrate with. If you are not an existing company, there are different issues to consider.
First, let’s look at big companies.

If your company is large enough, you might have multiple social web applications in
parallel development or with different teams. Many books have decried the simplistic
approach of making a website that matches your organizational chart, including In-
formation Architecture for the World Wide Web, Third Edition by Peter Morville and
Louis Rosenfeld (O’Reilly). Making web applications that treat your audience as a col-
lective whole is just as important here. There is not a separate audience for the news
site and for the discussion board for features, so users trying to access the news site and
the discussion board should have the same log-in details. This will mean cutting across
departmental boundaries, and probably some arguing will result.

A hard-line approach is sometimes necessary. There should be a single identity for any
single organization. Yahoo!, Google, and the BBC do it. Just like people continually
claim to need “advanced” search capabilities, there are groups who will argue the need
for a special login for their application. With the possible exception of short-lived ex-
periments, a single public identity should be workable for every organization. Internal
tools can have separate or additional authentication details, which in fact, can be de-
sirable for security reasons.

Implementing User Management and Open Single Sign-On
Identity management is not the only place where integration can be a headache, but it
is the most common, as social applications require identity. Failing to offer a single
identity leaves your customers with the following problem: which one of my “mega-
corp” identities do I use to log in? Which profile is associated with this message board?
This can result in a bad user experience and one that can make people leave. In par-
ticular, asking people to create another account when they already have one will cause
irritation.

336 | Chapter 17: Building APIs, Integration, and the Rest of the Web

http://www.bbc.co.uk/ontologies/programmes/2009-02-20.shtml
http://www.bbc.co.uk/ontologies/programmes/2009-02-20.shtml
http://oreilly.com/catalog/9780596527341/

Why does this occur? Many frameworks and all off-the-shelf social software have a user
database at their core. For instance, if you install MediaWiki to run a wiki, and a few
months later you want to create a blog using WordPress, each application will want to
manage its identity separately. This is in addition to the email reminder service you
probably already have. OpenID solves a lot of these issues, but in 2009 this problem
still persists. Therefore, deciding what your hub application will be is important. Nature
Network started in 2005, and a strong intention has been to create the single public-
facing identity hub for it. Over the past few years, both Yahoo! and Google have inte-
grated their identity management systems on the majority of their applications.

The open stack of OpenID and OAuth is a good starting point for building an identity
management framework. OAuth is probably the more useful of these if you need to
choose where to focus your efforts. OpenID has great potential and the gentle masking
of it, as “Use your Yahoo!, Flickr, Gmail, or AOL identity to log in,” will help greatly.
OAuth is more widely useful in the context of API usage. Dozens of Flickr applications
have been granted access to my Flickr account via a very similar mechanism to OAuth,
yet I have one Flickr account. By enabling OAuth, you create a secure means of allowing
access to the content hosted on your site for your community. Another option is to
base your application on a product such as OpenSocial, where a lot of this behavior is
built-in. OpenSocial also supports OAuth and OpenID (see http://opensocial.org).

Integrating Other Services
Many other aspects of your site might need to integrate with internal systems. Payment
services are a common centralized activity. Building yet another financial management
system will not make you popular with the accounting department, though. Therefore,
you should pass people over to the money-taking service, but make sure you can skin
it to make it feel like it’s a part of your own property. Sending people out to another
service that looks different from your own can be unsettling. At least maintain your
own site branding, if possible. Many magazine subscription services, for example, fre-
quently use a centralized subscription payment service and fulfillment operation, but
they at least retain the magazine brand.

Lightweight Integration Works Best
If you are integrating with a third party, you might need to design an API for them.
They will have a data source or service that you want to use, but perhaps have never
integrated with another website. Keep it lightweight and simple. Use XML over HTTP
and avoid the heavier end of service integration, like Simple Object Access Protocol
(SOAP) and the web services (http://www.w3.org/TR/ws-arch/) protocols, unless you
absolutely have to. Flickr and Google have offered SOAP access for web services in the
past, but found that the usage figures for SOAP are much lower than for simple RPC
or REST APIs.

Implementing User Management and Open Single Sign-On | 337

http://opensocial.org
http://www.w3.org/TR/ws-arch/

Avoiding Data Migration Headaches
Data migration between different systems is a huge headache. Writing and testing im-
port and export code and keeping both systems live during the handover are best avoi-
ded. But how? In 2009, Twitter is in the midst of migrating to OAuth from email and
password authentication. Flickr is still using its internal OAuth-like system and has not
yet moved to a pure OAuth approach. Customer support is one of the primary aspects
that needs attention in a move such as this. With thousands or millions of active users,
there will be some people who have problems. Moving everyone using Twitter’s ex-
ternal applications means hundreds of thousands of people will have to reset credentials
for perhaps two to three applications each. Picking the right technology for public-
facing authentication is difficult, and changing it is troublesome.

What about other forms of data migration? Public-facing authentication is a difficult
problem, but other areas are difficult to migrate, too. For instance, changing your ref-
erence geographic data set would require a lot of work. Staying with publicly available
or common data sets means you are likely to have other people working on the same
problems. Migrating a user system where email verification was not initially imple-
mented to one where email validation is the default will involve jumping through quite
a few hoops. People move and lose access to email accounts more often than you might
expect.

Researching this area carefully and taking advice from the developer community is the
only feasible approach. Working with the ongoing standards process to ensure that
you are doing the right thing also helps.

If you do need to migrate data, you need to test and test again. Having a long period
when you are running both systems during migration is possible, though some systems
are best migrated quickly. Changing log-in credentials is a good example (refer back to
the discussion of the long migration of Flickr users to the Yahoo! identity systems in
Chapter 6). The key step is to stop new sign-ups through the system to be replaced,
and then briskly setting up a migration system with a well-briefed customer service
team to handle any problems.

Avoiding Duplication
Companies with multiple products accessing the same data can end up with identifier
duplication. Projects can act as silos, and information does not always pass between
them as easily as you might want. Time is also a factor. Sometimes the same content
will get identifiers from different phases of a production process. When putting content
on the Web, it is advisable to have a single canonical representation of your objects. It
is quite common to have multiple identifiers pointing at the same object. The quest for
a single identifier for everything is a lost cause. Accept that there will be multiple iden-
tifiers in any large system and create the means to translate between them.

338 | Chapter 17: Building APIs, Integration, and the Rest of the Web

Email Notifications: Managing Your Output from Multiple Applications
Regardless of the scale of your operation, people like email updates, but they can
quickly get frustrated with them, too. Sending email to your customers is not a right;
in fact, in many countries, people have a right not to receive email sent by you. Giving
a simple means for your community to control which emails they receive from you is
a good idea. Consolidating content to be sent into a single email also tends to be ap-
preciated. Sending an email every time something happens on the site can get bother-
some. A good alternative is to use a queuing system. Park all the updates and then send
them when they are ready for that person in the intervals the person wishes: as they
happen, daily, weekly, or never. Finally, separating service-related emails from an-
nouncements and event notifications is polite. If you have multiple applications, con-
sider managing the overall email volume that your customers receive from you. A simple
logging application that notes when a person has been sent email can be helpful for
knowing whether a marketing email will be appreciated. Many social applications opt
to never send third-party emails, while some make it an option; tracking what you send
makes this a safer practice.

Making an API the Core of the Application
An API can be seen as an optional extra on top of your application, or it can be seen as
how you should make applications. Building your own features on top of the same API
calls as your external third-party developers means you are writing less code and con-
solidating testing. Note that these APIs do not have to run on the same servers; they
just need to use the same code. This also does not mean you are given wholesale access
to your application code, but rather that you are selectively sharing some of the calls
you use to create your own features.

The other approach is to create a separate set of code to comprise your API. This is
usually made after the main application code and needs to be kept in sync with how it
evolves. There are security advantages to this approach. For instance, you know exactly
what developers have access to. Also, they are less likely to reverse-engineer an undo-
cumented call, and it is easier to set up on a separate server group, as it is essentially a
separate application. The weakness is that it might never happen: the additional work
required to create an API needs to fight it out for time and money from bug fixes and
new features.

Handling People and Objects, the Stuff of Social Applications
Social applications are made of two basic ingredients: the people who use your appli-
cations and the content they contribute to your service. Pretty much everything else is
built on top of these two aspects. If you have private accounts, authentication will be
required to access them. Frequently, these objects are gathered into collections via
aggregation points such as tags, place, or time—for instance, all posts with red as a tag,

Implementing User Management and Open Single Sign-On | 339

or all photos in London, or all articles from March 2009. People are also accessed via
containers; for example, all followers of person ID 6. Many API calls are basically a
search with parameters—give me this kind of object matching this value. Write-based
API calls are obviously a bit different, but much of your traffic will be read-based API
calls.

Generally, people will want to create complementary activities to your main
application—remote access from the desktop or a mobile device or widget is a common
product. The Scout service, shown in Figure 17-4, finds out which of your images have
made it into the Explore section of Flickr; this is a simple extension of a core Flickr
service, purely based on API reads. An API call to read content seems like a duplication
of the website, but an API read can deliver just the item of content and not the sur-
rounding images, CSS, and JavaScript. This makes it a much less intensive service to
provide and encourages people not to just screen-scrape your site.

Screen scraping is an old and much used technique that predates wide-
spread API availability and microformats. Screen-scraping programs
would be written to download and interpret the HTML on a website,
and then extract the relevant content. Screen scrapers are error-prone,
and a small change in the format of the HTML pages will generally break
the screen scraper. The technique is still commonly used to read data
from legacy mainframe systems, however.

Designing an API
How do you go about designing an API? The first step is to decide what content and
behaviors you want to make available. Generally, read and write access to your primary
social object will comprise this initial step. Access to the friends and followers of your
community members is also popular. Offering a type of search will allow a huge range
of applications to be created. The Hunch application, shown in Figure 17-5, lists a
range of applications the Hunch team would like to see created to run alongside Hunch;
this is a great approach.

Next you need to decide what sort of applications you would like people to create.
Purely client-side applications can be created via a JavaScript API. If you want to allow
fuller web applications, you will need to create a server-side API. If you have a server-
side API, you will need to decide on OAuth versus email and password security (hope-
fully, you’ll choose OAuth). Expect the first few products that people build on your
API to be wrappers for their favorite language. If you provide PHP, someone will create
a Ruby wrapper, and so on.

Finally, you need to decide on an architectural style and response format. Prototyping
an application while designing the API helps to ensure you are making something that

340 | Chapter 17: Building APIs, Integration, and the Rest of the Web

works and that you are not depending on some internal knowledge or access. Let’s take
a look at some architectural styles.

RPC
The Remote Procedure Call (RPC) is historically the most common approach to API
design. It usually has a single URL or endpoint, and each API call is passed along with
the parameters as a POST or GET request. The interaction is verb-focused: do this or
do that. Essentially, each API call is running a program on another machine. It often
implies use of other services such as SOAP and the web services specifications, which
increase the complexity of implementation.

REST
REST (REpresentational State Transfer) is becoming more popular as a style. Your
entire site acts as the API; this is the closest thing to making your code and API overlap.
The interaction is resource- or noun-focused, and actions are reflected in the verbs

Figure 17-4. Scout service tracking the Flickr Explore pages and showing which of your pictures made
the top 500 for any given day (http://bighugelabs.com/flickr/scout.php)

Designing an API | 341

http://bighugelabs.com/flickr/scout.php

present in the HTTP specification. Pure REST APIs are uncommon, but frameworks
such as Ruby on Rails version 2 and later are making them substantially easier to create.
Viewing an object is as simple as doing a GET, such as on /person/id; creating an object
uses a POST, such as on /person.

XMPP
XMPP has become popular recently for high-volume services. It is obviously not based
on HTTP, and handles guarantee delivery situations very well. Fire Eagle, Yahoo!’s
location-sharing service, is one of the better known implementations of XMPP. XMPP
requires a separate set of software to maintain, but it relieves your web servers of han-
dling this traffic. If you have a range of third-party applications polling for user updates,
this is something to consider. See “API and Scaling Issues” on page 350 for more
information.

Response Formats
An API call implies a response. XML is a common default for this response, but Java-
Script Object Notation (JSON) is probably more popular (see http://json.org), as it is
easier to work with than firing up a whole XML parser for a few hundred bytes of
content. There are other options, including SOAP, should you wish, and some APIs
even return serialized PHP. XML and JSON are probably the most popular response
formats.

Figure 17-5. List of ideas that the Hunch team would like developers to create using their API

342 | Chapter 17: Building APIs, Integration, and the Rest of the Web

http://json.org

Comparing Social APIs
Three products that have had a good number of applications built with them are
Tumblr (the microblogging service), Flickr, and Twitter. Between them they represent
a good cross-section of social web application API approaches.

Tumblr
Tumblr has an API that is largely focused on making updates easy from external ap-
plications. There are just four calls, and the style is REST-like: a POST call to /api/
write, a GET call to /api/read, a call for authentication, and a call to create a session.
These calls are sufficient to create Mac OS X dashboard widgets and iPhone applica-
tions, and they allow integration with other social services such as Ping.fm and desktop
applications such as MarsEdit. There is no access to the social network in Tumblr, but
the API is clean and easy to understand.

Flickr
Flickr is the oldest of these three applications and has a mature API that offers a rich
set of functionality. Flickr offers several modes of operation. The basic one is remote
photo upload, but this includes a huge range of functionality for placing a photo in sets
and groups, plus tagging and geotagging. In addition, there are sets of API calls for
accessing the social graph of each person. There is also a group of API calls for remote
viewing of photos, including the ability to mark something as a favorite and to com-
ment. There are API calls for accessing the geographic aspect of Flickr, and there are
tools for searching for photographs and people on Flickr.

Enough functionality is provided to almost completely replicate Flickr on a client ap-
plication. Based on this comprehensive API, myriad Flickr applications and Flickr pho-
tographs are embedded in many services, from Upcoming to Last.fm and many blog
posts.

Flickr’s API is essentially RPC in nature, offering a single endpoint for data access and
passing parameters to make each query. The RPC version expects to receive an XML
data packet, and the REST version expects the appropriate GET or POST as parameters.

The Flickr API offers a wide variety of response formats. Compfight, for one, provides
a rapid visual search (see Figure 17-6) for Flickr, based on its API.

Comparing Social APIs | 343

http://www.tumblr.com/api
http://www.tumblr.com/api
http://compfight.com

Figure 17-6. Compfight kitten search based on the Flickr API and displaying images from Flickr

Twitter
The Twitter API is currently a two-part offering. The main API is focused on people
and content uploads or viewing; a separate search API is offered as a result of an ac-
quisition of another company in 2008. There are many applications for Twitter. The
majority of the activity on Twitter’s servers is API-driven. Many people visit the site
perhaps weekly, while they use Twitter several times per day (or hour). The API is very
complete as a result.

Content posting, social network management, and timeline management are all inclu-
ded. It is possible to use Twitter for days at a time without visiting the site. A good
example (see Figure 17-7) of a full-featured client is Tweetie. This client supports search
and the ability to follow and unfollow from within the application. Part of the huge rise
in Twitter’s popularity comes from the availability of clients such as Tweetie.

The API in Twitter is largely REST-like and highly detailed; in addition, developer
community management is clear and well documented. A wiki with documentation
and a changelog, plus an active mailing list, support the developer community well.

One tactic that Twitter took with its applications was to allow each client to say who
created the message (see Figure 17-8). The text “twitterrific” is displayed on the Twitter
website, and it links through to the site where someone can download Twitterific. This
makes it very easy for new products to get exposure to people on Twitter.

344 | Chapter 17: Building APIs, Integration, and the Rest of the Web

http://apiwiki.twitter.com/
http://www.atebits.com/tweetie-iphone/

Figure 17-8. Twitter message source, indicating which Twitter client application posted the message

In Figure 17-8, Twitter displays the names of external applications that send messages
to Twitter, giving rapid exposure to new Twitter clients.

Reviewing the APIs
The APIs generally have three sections to them: data about people, data about objects,
and search facilities. None of the APIs allows for remote account creation. Twitter is
considering this, but only for formal, trusted partners. Account creation should really
happen on your own site.

Simple APIs such as Tumblr are appropriate starting points and may be all you require.
Flickr’s API shows the degree to which Flickr has also become a photographic and,
arguably, geographic service on the Web. Finally, Twitter, through its API, has suc-
cessfully gotten itself in many people’s pockets on a daily basis.

Figure 17-7. Tweetie, a fully featured iPhone application for Twitter

Reviewing the APIs | 345

One aspect that Apple has handled very well with the iPhone SDK release was the
creation of the App Store. Giving developers a visible marketplace rapidly increased
adoption of new applications. Twitter took a slightly different approach. It provided a
link to the source for each application that sent messages to Twitter. Each new appli-
cation had to be added to an approved list by Twitter first.

Writable APIs
Creating a writable API means two things. You need to authenticate that the developer
has the permission from the person using the application to upload the content. This
is the previously mentioned OAuth versus password and email choice of account
management.

Another, subtler aspect of this is that data written to one place can take time to appear
back on the website, particularly if a queuing system is being used. You need to decide
how important this latency is for your community. You can fake the immediacy of a
text update quite easily using a combination of XMLHTTPRequest and DOM manipula-
tion. The viewing person will see the update and generally assume that everyone else
has done so as well. The fact that it is being queued for processing is immaterial. With
larger items of content, such as photographs, videos, and presentations, your com-
munity will get the idea that the service needs to do something with the content before
they see it. Solving this problem becomes increasingly more difficult in distributed
systems.

Extending and Fine-Tuning Your API
Determining what to send about an object is an important decision. One of the reasons
to have an API is to reduce the amount of data you need to send, but send too little and
you will encourage multiple requests per operation from third-party developers. Flickr
sends a small amount of data per interaction, but allows selective requesting of licensing
information, geographic data, or ownership information. These extras‡ are a clean way
to extend an API. They avoid a pattern whereby the developer requests a range of objects
and then, photo by photo, all the other information about each one, only to use 3 of
26 pieces of information, discarding the rest.

Wrapping API Calls
Frequently the exact implementation details of your own application will be masked
by an API wrapper, allowing easy integration into your language of choice. All the
external developers need to care about is the API wrapper, leaving you free to work on
the underlying code. Encouraging creation of these wrappers will help build a good
developer community. Even better, you can create the first few yourself. Listing these

‡ http://code.flickr.com/blog/2008/08/19/standard-photos-response-apis-for-civilized-age/

346 | Chapter 17: Building APIs, Integration, and the Rest of the Web

http://code.flickr.com/blog/2008/08/19/standard-photos-response-apis-for-civilized-age/

wrappers as part of your API documentation will probably encourage people to create
more applications. Make sure the listing is kept up-to-date, though: seeing a wrapper
for your favorite language, and then finding a dormant project that doesn’t work with
the current API, just leads to frustration.

Using API Alternatives
You might not need to create an API for every aspect of your site. A combination of
microformats and RSS/Atom feeds will create a read-only API. Many applications now
bristle with feeds for all sorts of objects. A photo can have a feed of comments. A tag
will have recently tagged objects. A person will have her recently contributed content.
Feeds such as these are an easy way to place content outside your site and elsewhere
on the Web. They might end up combined in a Yahoo! Pipes or similar mashup or
simply in an RSS reader so that someone can keep tabs on activity on your site. Yahoo!
Pipes is a highly configurable product for processing data that is available in RSS form.
It is possible to integrate this data with Yahoo! software such as search products. It can
also be used as a basic scripting tool for processing web feeds.

Microformats also allow content reuse, but in a more specialized manner. They wrap
people, places, and dates. Other applications can take this content and reuse it, know-
ing that it is a person and not the result of an unstable screen-scraping process. Finally,
taking date-based data and offering an iCalendar (.ics) file (http://tools.ietf.org/html/
rfc2445) of the events means the content that is important to a person on your site can
appear in his calendar. Dopplr and Upcoming amongst others are avid providers of
these kinds of calendar files.

Using HTML Badges
Not everyone is capable of putting content in the form of RSS or microformats to good
use. By creating web badges, you can make it easier for people to take a piece of your
site with them. Web badges commonly allow people to put their photos or planned
travels or recent messages on their own site or social network page. Flickr, Twitter, and
Dopplr all offer them, along with companies such as SlideShare, which allows
embedding of presentations. It is a remarkably effective method of allowing
non-developers to reuse individual content.

Interoperability Is Harder with Snowflake APIs
Building an API is a lot of work. Usually there will be something else on which to base
at least some of the work, which helps a lot with interoperability. Too often, though,
people decide that their problem is unique and create a specialized, or snowflake, API
(http://www.dehora.net/journal/2009/01/09/snowflake-apis/). When you use a snow-
flake API, you create extra work for all of the developers who want to use your appli-
cation. The classic example of this was access to address book contacts on a webmail

Reviewing the APIs | 347

http://microformats.org/
http://tools.ietf.org/html/rfc2445
http://tools.ietf.org/html/rfc2445
http://www.dehora.net/journal/2009/01/09/snowflake-apis/

system. Every provider did it in a slightly different manner, making interoperability
impossible, but now the Portable Contacts specification standardizes the process of
accessing contacts. Before you create a wholly new approach to a problem, first check
to see whether there is a related approach in a common standard. Your developer com-
munity will thank you.

Sticking with Standards
There are many useful standards on the Internet for building applications, particularly
social applications. In this chapter, we’ve already discussed OpenID, OAuth, micro-
formats, RSS, Atom, XMPP, and even XML. We’ve looked at OpenID and OAuth in
length, so now let’s check out some of the other standards.

The Portable Contacts specification shows how to simply build a common means of
access to address book information or contacts. Currently, this is done via bespoke
APIs for contact access or screen scraping for hCard microformatted data, if you are
lucky.

AtomPub is a protocol for accessing and editing web-based resources. It is formally
ratified by the Internet Engineering Task Force (IETF), is heavily influenced by the
REST architectural style, and supports Unicode by default.

Activity Streams is a draft specification that is looking to formalize the updates that
flow from social applications. This looks like a promising way to move forward for
social network federation.

Standardizing APIs
In the microblogging community, numerous products compete with Twitter. The Iden
tica/Laconica project, among others, mimics the Twitter API so that many clients sim-
ply need to have their root API URL changed and they will work. Six Apart took a
similar approach when it launched its TypePad AntiSpam competitor to the Automattic
product Akismet. In both cases, the APIs are plug-in replacements. So, changing serv-
ices is trivial and uptake is much easier.

Using OpenSocial
Facebook’s application platform attracted a lot of attention, but it is limited to Face-
book users only. An alternative approach to Facebook’s application platform comes
from Google. It created an open source alternative platform called OpenSocial. One of
the more popular implementations of OpenSocial is Shindig, which is an Apache In-
cubator project with implementations in Java and PHP. Using Shindig, you implement
a container so that other applications can be placed inside it. Then you can create
whatever application you like, with this space left ready for others to come and use.

348 | Chapter 17: Building APIs, Integration, and the Rest of the Web

http://portablecontacts.net/
http://www.ietf.org/rfc/rfc5023
http://activitystrea.ms/
http://laconi.ca/trac/
http://laconi.ca/trac/
http://antispam.typepad.com/
http://akismet.com/
http://code.google.com/apis/opensocial/docs/
http://incubator.apache.org/shindig/

OpenSocial has two parts. The first is a specification for JavaScript-based Gadgets or
Widgets. The second, more interesting, aspect is a mechanism for applications to gain
access to the host’s underlying social network. LinkedIn used this recently to allow
Huddle, a collaboration tools provider, and SlideShare to create applications that can
be embedded on a person’s profile page. In the case of LinkedIn and Huddle, the con-
tacts of the LinkedIn user become available within the Huddle application (http://www
.linkedin.com/static?key=application_directory).

OpenSocial offers a lot to a company that is creating a new social application from
scratch. It standardizes the mechanisms for accessing information about people, han-
dling activities, and storing data persistently. It also allows application developers to
quickly build applications to work on your platform; they do not have another new
API to learn. As such, it is a good starting point for creating a social application.

Creating a Standard
Most of these standards have not come from large companies deciding that this was
the way things should be done. For instance, OAuth came from a group of developers
trying to solve a problem. It is possible to create a standard such as OAuth, but it takes
lots of time and effort. Start with a common problem and find like-minded people to
help solve it. There are plenty of emerging areas from federation to providing real-time
services upon which to focus your efforts. Tools such as Google Code and GitHub
combined with a mailing list and a wiki make it easy to get these initiatives started.

Managing the Developer Community
Flickr communicates regularly with its developer community via its blog and a mailing
list. Like many social application companies, many of its developers have quite a public
persona. This visibility translates into a stronger sense of community on Flickr’s site
than that of a company with closed development cycles.

Key tools for maintaining good communication with a community of developers in-
clude mailing lists, a technical blog, a Twitter account, and a status page. Ideally, there
should be an issue tracker and potentially an immediate road map for new features.
Tools such as a public issue tracker are very valuable to developers who depend on
your product. Twitter uses Google Code services for the tracker it offers (http://code
.google.com/p/twitter-api/updates/list). Vimeo offers a public road map for its product
(http://www.vimeo.com/roadmap). These tools sit alongside a comprehensive set of
documentation and the companies’ willingness to be open and admit mistakes.

Another good example is the build.lastfm.com service from Last.fm. This is a showcase
for third-party applications that people have created for Last.fm. From the
build.lastfm.com service, there are links to the documentation and mailing lists so that
you can create your own applications. These sorts of marketplaces are important be-
cause they can create a sense of activity around your applications. They also make your

Managing the Developer Community | 349

http://www.huddle.net
http://slideshare.net
http://www.linkedin.com/static?key=application_directory
http://www.linkedin.com/static?key=application_directory
http://code.google.com/p/twitter-api/updates/list
http://code.google.com/p/twitter-api/updates/list
http://www.vimeo.com/roadmap
http://build.lastfm.com
http://build.lastfm.com

developer community feel valued, and thus likely to make more applications for your
API, rather than moving on to another application.

API and Scaling Issues
APIs place unique demands on your servers. Normally, you will have your own peer-
reviewed, well-tested code running on your hardware. By releasing an API, you are
letting anyone run code against your hardware. Given that social application APIs are
tempting places for amateur developers to try out their skills, this could be a recipe for
high server loads and problems.

The solution is the developer key. To make a call, each developer must pass in a devel-
oper key. This key is tracked and allowed a certain number of requests per day or per
hour. Going over this limit returns a 400 error code that should tell the developer to
back off a bit in terms of request rate. This throttling approach is quite widespread on
social applications. Another option is to provide a refilling bucket approach rather than
a fixed limit—perhaps 5,000 requests in a rolling 24 hours, but no more than 250 per
hour. These limits can be reviewed once it is clear that the developer is producing a
serious application and can respect the rate limiter.

Allowing Integration
Once you create an API, you are allowing people to integrate your content with their
own. There are two aspects to this. The first is which rights you grant the developers
in terms of using your content. This is more of a concern if you are a publisher. The
second thing you need to think of is the individuals who have contributed content to
your site. Now that you have these external developers using your service, you need to
consider how this changes the user experience for non-developer users of your service.
The Flickr examples from Chapter 8 are worth reviewing in terms of third-party rights
management.

Running the API on your main site servers can work, but if you are expecting irregular
or potentially high loads, it is advisable to have server capacity just for the API. The
simplest approach is to poll an RSS feed. This will work fine for infrequently used feeds,
but even this can be a strain if thousands of feeds are in use. Generation of these feeds
as needed and a good caching policy will help, combined with monitoring IP and user
account or developer key usage.

For the majority of applications, the combination of a developer key and monitoring,
combined with approaches such as the Flickr Extras extensions mentioned earlier, will
allow you to manage traffic levels on your APIs quite well. An emerging area in 2009
is the publication/subscribe (pubsub) model. XMPP is one such approach, which we
discussed in Chapter 16. XMPP is an interesting protocol, but it suffers somewhat, as
it is a different protocol from the rest of the Web, which runs on HTTP. It means you

350 | Chapter 17: Building APIs, Integration, and the Rest of the Web

need to run a different set of servers and encourage your developers to work on this
protocol that is likely new to them.

A new approach is PubSubHubbub, which offers decentralized pubsub, but running
over HTTP. It is an extension to the Atom standards, which we discussed in Chap-
ter 16. The following quote comes from the initial definition for PubSubHubbub:

We offer this spec in hopes that it fills a need or at least advances the state of the discussion
in the pubsub space. Polling sucks. We think a decentralized pubsub layer is a funda-
mental, missing layer in the Internet architecture today and its existence, more than just
enabling the obvious lower latency feed readers, would enable many cool applications,
most of which we can’t even imagine. But we’re looking forward to decentralized social
networking.§

This approach removes the constant polling for new content that RSS implies. When
new content is generated by an application, it notifies its local hub, which then tells
any subscribers via the callback HTTP address they have supplied. This is an interesting
way to develop applications that can push content to interested parties rather than
relying on constant checks for non-existent new content (http://pubsubhubbub.appspot
.com/).

Real Time Versus Near Time for APIs
Twitter offers a real-time feed to selected partners. This includes every Twitter message
sent being passed to these external systems as it happens. This feed used to run on
XMPP, but it has moved over to a Scala-powered solution. A key aspect of the real-time
feed for Twitter is that it provides the content as a complete service to other companies
on which they can build products on top of. These so-called fire hoses of data place a
heavy load on both parties in terms of service availability. Many other applications need
up-to-the-minute search-based results, but not a complete fire hose.

Two other approaches come from the New York Times and Flickr (again). Neither
company offers a complete feed of its real-time data creation. The New York Times
offers The Times Newswire API (http://developer.nytimes.com/docs/times_newswire
_api/), which provides news stories over the past 24 hours. This is a lot of content, but
it is not at the scale of the full Twitter feed.

Flickr offers a real-time service, but not a complete feed. It wraps the service in a light-
hearted presentational style with “notional pandas,” which look at the new Flickr pho-
tos and (algorithmically) select the ones they like:

Ling Ling and Hsing Hsing both return photos they are currently interested in, both have
slightly different tastes in photos depending on their mood. The (currently) third Panda
Wang Wang returns photos that have recently been geotagged, not quite real time but
close.‖

§ PubSubHubbub Core 0.1, Working Draft, http://pubsubhubbub.googlecode.com/svn/trunk/
pubsubhubbub-core-0.1.html

Managing the Developer Community | 351

http://pubsubhubbub.appspot.com/
http://pubsubhubbub.appspot.com/
http://developer.nytimes.com/docs/times_newswire_api/
http://developer.nytimes.com/docs/times_newswire_api/
http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.1.html
http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.1.html

This approach delivers photos that provide a good taste of what is on Flickr, but not
the complete content. It is also possible, of course, to get the feed for any one individual.
Flickr could offer an unfiltered public feed, but has deliberately chosen not to offer that
as part of its API. The fully real-time model implies delivering all your content, which
is a heavy architectural undertaking; check whether a search- or sample-based approach
might suffice.

APIs Can Be Restrictive
An API is a private interface to your application’s content. It will restrict, sometimes
intentionally, what is possible with the content. The API is generally designed in the
interests of the company creating it and its immediate business partners, and, of course,
the community using the application. The developers are in there, too, but probably
not at the top of the list. When using an API, it can be frustrating to know that a piece
of data or particular function call is in use on the site but is not available to external
developers.

Association of small amounts of data against larger applications is best done in the main
application database, but the ownership and access structures of large relational data-
bases make this impossible. An alternative approach is FluidDB, which proposes a flat
model of content and attributes. Anyone can assign attributes on any item of content
in the database. There is no longer any need for an API; the entire system has a single
general API. This approach looks to be interesting for a range of problems where a wiki
might be a good choice but more appropriate structure is needed.

Not Just Your Own API
While you’re creating your own API for external use on other aspects of your site, you
might well be using someone else’s API. This free functionality from others can be
fantastic. There are excellent free services on the Internet for performing many tasks
that might be hard to implement or that rely on restricted, large, or private data sets.
How do you manage all of these external dependencies on others’ APIs? You can use
a similar model as for scaling. Make sure all the external services are wrapped in an
asynchronous connection, outside the direct user feedback loop. Offline processing, if
at all possible, is the best approach. If you are using JavaScript APIs, ensure that there
is a fallback position and that you can do something if that map is not available. One
further point about JavaScript: make sure you do not overload your pages with included
JavaScript, and be sure to track and monitor the size of the pages you are actually
delivering.

‖ http://code.flickr.com/blog/2009/03/03/panda-tuesday-the-history-of-the-panda-new-apis-explore-and
-you/

352 | Chapter 17: Building APIs, Integration, and the Rest of the Web

http://www.fluidinfo.com/
http://code.flickr.com/blog/2009/03/03/panda-tuesday-the-history-of-the-panda-new-apis-explore-and-you/
http://code.flickr.com/blog/2009/03/03/panda-tuesday-the-history-of-the-panda-new-apis-explore-and-you/

Create an API?
A social application without even a minimal API has unfulfilled potential. Giving ex-
ternal applications access to your site will keep your community in contact with the
people on your site. Allowing access to metadata will surprise you with the kinds of
applications developers will build with your content. Many decisions need to be made
to create an API for your application, but whether to have one should not be in question.
A thriving developer community is the sign of a healthy social application.

Summary
Defining your API should be one of the first technical steps in creating your application.
An API is too expensive and awkward to add after launch, so planning your own API
in parallel with your development is the right approach. Basing your API on common
standards and behaviors will make it much more likely that other developers will take
to your new API because it will be familiar to them. This new developer community
needs your support. Do this well, and they will reward you with increased exposure
and plenty of new functionality, as well as bringing new people to your application.

Summary | 353

CHAPTER 18

Launching, Marketing, and Evolving
Social Applications

You need to introduce your application to people you do not know, and you need to
listen to them tell you what they really want from it. Once you launch, the focus will
be on making people aware of your application, refining the functionality you offer,
and adding new functionality.

Loving and Hating the Home Page
Home pages are hard work; I’ve deliberately avoided talking about them too much until
this chapter because I think there is too much focus on them. In some instances, they
are the first place that new people will come to, but much of your first arrivals’ expe-
riences will come via a search result or from a link to someone’s content or profile page.
The idea that people enter a social software site through the home page and that it
therefore acts as a front door is largely dead and buried.

In fact, there are two versions of the home page, as we looked at in Chapter 13. One is
the personalized version for people with an account, and the other is for people who
have never visited your site before and ended up on it when a search engine result led
them to an internal page. These people do not have the social context that a link from
someone’s personal page would bring, so in this case, the home page is very much a
marketing exercise. You have a brief period to capture their attention and get them to
read more or click the sign-up button. As Figures 18-1 through 18-4 show, different
sites take different approaches to designing this type of home page.

355

Figure 18-1. Dopplr home page

356 | Chapter 18: Launching, Marketing, and Evolving Social Applications

Figure 18-2. Flickr home page

Loving and Hating the Home Page | 357

Figure 18-4. Twitter home page

The Delicious home page is the most functional of the four examples, showing recent
popular content. Both Flickr and Dopplr show elements of their contributed content:
Dopplr shows popular cities and a quote, and Flickr shows a striking photo and explains

Figure 18-3. Delicious home page

358 | Chapter 18: Launching, Marketing, and Evolving Social Applications

the different supported activities. Twitter altered its home page in early 2009, removing
the public Twitter feed and now shows quotes and a video to give a sense of the expe-
rience. Twitter is also the only one not to offer the option to search its content from
the home page.

Your home page can be highly functional , offering an experience similar to the one the
Delicious home page offers, or it can be more marketing-led, like Twitter’s. Which one
you choose depends on how understandable the objects your service hinges upon are
when they are shown outside their normal context. A bookmark is easy to understand,
whereas a stream of Twitter messages could be slightly more difficult to understand
because of the lack of social connection to the authors. Dopplr and Flickr both choose
to show range of content and functionality to appeal to new users. Flickr also offers a
tour, but it is much lower on the page. The prominence of search is important. Most
people, with the exception of geeks, do not immediately sign up for a new service; they
want to explore it first and find out what it might provide for them. Offering a range
of ways to understand the service is important. Some people will search, some rely on
quotes, and some want a list of features or a tour to convince them.

A final suggestion is to ensure that your service is useful to people even before they sign
up. Much of Flickr, Dopplr, and Delicious makes sense to people who have not logged
in because travel information, photos, and bookmarks have utility of their own,
whereas the nature of Twitter makes it a harder service to understand without experi-
encing it. No doubt Twitter will find ways to give a sample of its content, perhaps using
the favoriting function and creating something such as http://favrd.com/.

Your Site Launch
Your market will influence how you approach your launch. Some may see launching
as an endpoint, but it is far from it. This is the time when you allow people you’ve never
met to come and experience your site for the first time. You should make sure to see
this fresh out-of-the-box experience prior to launching, and you can because the people
you are likely to ask to test will have some connection to you (e.g., they may be your
friends).

Without your helping hand to guide them, these new people will figure out whether
your site makes sense to them and will tell other people about it. Now is when you
need to make sure your team is still together and ready to welcome people. Respond
to any immediate misunderstandings about what your site actually does by changing
the brief text on the home page or giving some better examples. Do not start trying to
change functionality; hold your course and see what continues to crop up.

The Soft-Launch Approach
Following the advice in Chapter 16 about a soft-launch approach, you should have
knocked the rough edges off your application and should now be ready to show it to

Loving and Hating the Home Page | 359

http://favrd.com/

strangers. If you have a social application that works with an existing community—
say, a Twitter or Flickr application—you might want to limit the number of people
who come to you on launch day so that you don’t have to deal with scaling issues in a
panic on day one.

There is a real trade-off to explore here. Having 10,000 people sign up on day one
sounds fantastic, but if your application crashes or times out a lot, most of them will
never come back. On the other hand, allowing people to give an email address to get
an invite in a few days will capture most of those 10,000 people, but it will also give
you a chance to slowly add new people. The first few days in public might make you
want to change the user interface of some elements or rewrite some aspect of your
application. A strong “like it, but” response to a feature can provoke this kind of change.
Grappling with scale issues and feedback on the application’s functionality at the same
time is not a good position to be in—what you really want is sustained growth based
on word-of-mouth from happy users.

The Hard-Launch Approach
The other approach is a hard launch whereby all visitors are welcome and the launch
includes marketing, PR, and a big push. This can work, but you need to be confident
that your application has been checked by enough external people so that the “like it,
but” crowd is small in number. When doing a big launch, you must be ready with
scaling options, and a flexible hosting company can be a great help with this. Owning
the hardware to scale to a level you’ll not sustain for maybe a year is foolish economics.
Many applications have a huge spike on day one and then hopefully a rapid growth
back to this spike level over the coming weeks if they are lucky or months if they are
less lucky. Services such as Amazon EC2 can be invaluable for handling these sorts of
bursty loads.

Your Product Name
One thing you need to do regardless of which launch approach you take is decide on
a name. Obviously, it has to be a free domain name unencumbered by trademarks.
More than that, it needs to be a good name. Two-syllable names work really well,
particularly ones that can be turned into verbs easily. Flickring and tweeting roll easily
off the tongue and help to cement a person’s relationship with the site. An easy-to-form
collective noun is a harder nut to crack, but Flickr-inos and Dopplr-istas do exist. How-
ever, being able to generalize a product name can weaken its trademark value; hence
you now hear people “Hoover-ing” with a Dyson. Because of this, Google is resisting
the use of googling as a verb, but in the short term hearing people Flickring pictures
communicates a lot.

Now that you have a plan and a name, you need a community, which we will discuss
next.

360 | Chapter 18: Launching, Marketing, and Evolving Social Applications

A Friendly Invitation
The common invite your friends approach works for both hard and soft launches. For
a hard launch, it simply grows numbers and provides a social context for the new people
who are arriving, which I’ll explore later in the chapter. For a soft-launch approach,
the number of invites a user is allowed to send becomes a parameter you can tinker
with to bring in more or less people to your site. The most famous example of this is
probably the Google Gmail invites, which when launched became very desirable. This
is simple economics: restricting the supply of something that is in demand makes its
effective price/desirability rise. The flipside of this is a slow-moving application where
you increase the number of invites a user can use when he failed to give away the ones
he already had. Careful monitoring of the number of sent versus accepted invites and
the number of unsent invites is a key marketing metric. Those people who are success-
fully inviting people to your application are worth encouraging, but don’t give out
invites to people who already have plenty. It can make you look foolish or desperate.

Invites can give you a certain level of desirability, they can provide a social context, and
they can help with scaling issues. You can also give out invites to a waiting list of
applicants for your site. These invites are less powerful because they all come from you,
but they do help with scaling issues and somewhat with desirability.

A last point about invites: people forget, so a polite reminder a week or so after sending
an invite to those who have not accepted can be quite effective. However, you should
do this only for invites that the individual has requested. For invites sent by your users
to potential new members, allow them to send the reminder; it is more likely to be
effective. If you send the reminder on their behalf, it can be seen as unsolicited and
spam-like.

Financing Your Site
Keep in mind this simple but extremely important formula:

Community != Money, unfortunately*

Launching and refining are useful topics to discuss, but servers and staff members need
to be paid for. Taking new types of social objects online will bring traffic. Take Flickr
and YouTube, for example. Given the 2009 downturn in the advertising market, which
looks likely to persist for a while, the old business plan standby of “advertising sup-
ported” is looking less realistic. However, there are a variety of means of garnering
income for your site.

A popular approach is to offer a paid membership for extra features, while making sure
to retain enough functionality to keep the free users’ attention. Many sites successfully
charge a few dollars per month or $20 per year for a pro membership.

* In case you aren’t a programmer, != means not equal to.

Financing Your Site | 361

An ad-supported plan can work well if you have good representation from a particular
niche group (more so if that niche is well heeled). Using text ads, like Google AdSense,
can work well if there is enough of a context for the matching algorithm to find rele-
vance. On many sites, such as Twitter, there is just not enough text to support this kind
of model. Many sites aim text ads at free users and remove them from paid accounts,
which seems to be a popular model.

Affiliate sell-through of products might be a successful approach, depending on your
content. Balancing the ads and the content that is leading the sales against the com-
munity content can become a concern, however. Any paying users are likely to resent
the ads appearing on their pages, yet they are the ones most likely to have enough
interest to buy the advertised products. Offering a support this site store can be an
effective and non-intrusive way for this to work. Dopplr, for example, has a shop selling
travel products and a partnership with a hotel chain. Partnerships can work in a variety
of ways, but the social application needs to have a large community for it to even be
relevant for discussion.

Lastly, sponsorship can be a good model, as long as the sponsor is not too direct about
site functionality. The sponsorship is usually for a fixed period of time, and the func-
tionality remains, so make sure whatever you make with them is something useful and
is not too closely tied to the sponsor’s brand so that you can reuse it later or cleanly
dispense with it.

Offering Premium and Freemium Models
Offering a service for free and upselling to a paid, premium model is becoming a popular
tactic.† Many sites are either moving from fully paid services to offering a free version
or creating a paid offering on top of an existing free product. For instance, Twitter
announced in March 2009 that it would be implementing paid accounts for companies
(at the time of this writing, there is little additional detail on this). Flickr offered paid
accounts within a few months of its launch to cover costs, and after Yahoo! purchased
it, it retained this model, though at a reduced yearly rate.

Upselling models can suffer from overly keen salespeople. For example, it alleged that
Yelp, the restaurant review site, alters the presentation of favorable reviews on the basis
of whether the premium listing is taken (see http://www.eastbayexpress.com/gyrobase/
yelp_and_the_business_of_extortion_2_0/Content?oid=927491&showFullText=true).
Given the opaqueness of the Yelp review listing model and the liberal terms and con-
ditions Yelp operates under, it is easy for these kinds of accusations to be thrown
around. Yelp is by no means the only company to be accused of this.

† Chris Anderson has a list of business models based on making your service free at http://www.longtail.com/
the_long_tail/2009/03/terrific-survey-of-free-business-models-online.html.

362 | Chapter 18: Launching, Marketing, and Evolving Social Applications

http://www.eastbayexpress.com/gyrobase/yelp_and_the_business_of_extortion_2_0/Content?oid=927491&showFullText=true
http://www.eastbayexpress.com/gyrobase/yelp_and_the_business_of_extortion_2_0/Content?oid=927491&showFullText=true
http://www.longtail.com/the_long_tail/2009/03/terrific-survey-of-free-business-models-online.html
http://www.longtail.com/the_long_tail/2009/03/terrific-survey-of-free-business-models-online.html

Marketing
Some Internet developers think of marketing as a dirty activity, or something that they
just couldn’t do themselves. This is a pity, as there are great opportunities for marketing
social applications. Beyond letting your community use their content to add a badge
to their site, there are other opportunities to make announcements or create a buzz.
Simple breakthrough numbers, such as your first 1,000 or 10,000 users, can be a cause
for celebration. If you have a flexible development model, you can time releases for
particular events, while shipping out the minor updates and bug fixes. Naming these
releases and announcing them to your community with a coherent message helps the
community to understand what you are doing and that you are working hard to improve
the product. The naming can be up to you. For instance, Dopplr names its releases after
the city in which the announcement will be made, and given that Dopplr is about travel,
this makes a lot of sense.

“Eat your own dog food” is a common expression—it means use your own tools to do
things. If you are not actively using your own product, people might think that you
lack faith in it. Using your product will also help you figure out what does and doesn’t
work. Moreover, producing content using your own tools is a great way to show your
users what is possible.

Taking stock of what your community has been creating is important; it gives you a
chance to see how people are using your tools and what they are making with them.
For instance, the Flickr blog is filled almost daily with lovely pictures from the pho-
tographers who use it. They are actively curating the site and finding these images. With
Dopplr, the content is largely private and much less visual. The annual view of some-
one’s travels was something the Dopplr team made to show activity. Each report is a
private view of what you have been up to in the past year. In order to provide an example
of what the report looks like with the public, the team created one for Barack Obama,
showing where he had traveled during his presidential campaign. The annual report,
shown in Figure 18-5, launched shortly before the inauguration and was picked up by
various newspapers because of its timely relevance. This is a great example of how to
generate marketing for your product.‡

Achieving and Managing Critical Mass
Achieving critical mass means becoming the default application for a group of people
for an activity. Social applications can (and need to) achieve a certain critical mass. Of
course, the exact size varies depending on the domain and subject. For instance,
Sermo arguably has critical mass in the medical space in the United States, as its users
comprise many of the medical practitioners there. Sermo also provides a private space

‡ See http://blog.dopplr.com/2009/01/15/dopplr-presents-the-personal-annual-report-2008-freshly-generated
-for-you-and-barack-obama/.

Achieving and Managing Critical Mass | 363

http://sermo.com
http://sermo.com
http://blog.dopplr.com/2009/01/15/dopplr-presents-the-personal-annual-report-2008-freshly-generated-for-you-and-barack-obama/
http://blog.dopplr.com/2009/01/15/dopplr-presents-the-personal-annual-report-2008-freshly-generated-for-you-and-barack-obama/

for physicians to get help with clinical cases. Twitter has millions of people using it,
many times the number of Sermo, but it took that sort of scale for an application to
have such a broad appeal. Some might argue that Twitter doesn’t yet have critical mass;
certainly it is smaller than Facebook.

Flickr achieved critical mass for Internet-aware photographers and became the default
“friending” application for a year or so. Then Facebook and Twitter came along and
supplanted its position. In the meantime, Flickr stayed true to its photography roots
and did not try to compete with Facebook on being the friend application. Critical mass
can be a two-edged sword in that respect. When Flickr ceded the friending application
crown it had worn lightly, a vibrant photography application and community was still
in existence.

Achieving widespread use within a community is great, but it needs to be the com-
munity you want, and you need to be creating the functionality that your community
wants. Time will tell whether the Facebook community warms to the real-time news
feed that Facebook released in early 2009.

Figure 18-5. Dopplr annual report on Barack Obama

364 | Chapter 18: Launching, Marketing, and Evolving Social Applications

Arriving with Context
One of the key criteria for success for many social applications beyond basic utility for
an individual is that her friends use the application. New members who arrive with
context from friends are more likely to stick with your application.

Dopplr ran for several months as an invite-only application. This meant new members
already knew someone who was an active member of the site. Dopplr’s seed group was
the common “friends of the founders” group, which mainly included active travelers
to international conferences. The team then added the Dopplr 100, which was a hand-
selected group of leading companies in technology, industry, design, advertising, and
publishing. If you had an email address at one of these companies, you could get an
invite. Dopplr then connected you with people from your company. Friendly compe-
tition between rivals such as IBM and Sun ensued as to who had the most members.§

Prior to launching publicly, Dopplr also did rounds for NGOs (http://www.dopplr.com/
ngo100) and for mobile telecommunications companies (http://www.dopplr.com/mo
bile25). Subsequently, Dopplr has created invites and groups based on conferences
(http://www.dopplr.com/group/future-of-web-apps-expo-london-2008/public).

Maintaining context is really important to Dopplr, arguably more so than for some
other applications, as many people will not travel several times per month. Contextually
meaningful content can be a very useful tool elsewhere, helping to avoid the blank page
devoid of updates as the person is connected to no one on the site.

Twitter has added a Suggested Users feature, shown in Figure 18-6 (http://blog.twitter
.com/2009/03/suggested-users.html). When people join, it suggests to them popular
people to follow so that they can get a sense of what Twitter is all about. This approach
can lead to a lot of competition and suspicion about how to get on this special list, as
these lists can generate a lot of followers for those included on them.

FriendFeed has an interesting way of showing new people: if someone you follow marks
something as liked on FriendFeed, it will appear in your feed, as shown in Fig-
ure 18-7. This bleed-through of content from one person to another helps build social
context among groups of friends using the service.

§ http://www.redmonk.com/jgovernor/2007/10/18/now-its-a-game-an-ibm-vs-sun-game-dopplr-meets
-cagefightr/

Achieving and Managing Critical Mass | 365

http://www.dopplr.com/100
http://www.dopplr.com/ngo100
http://www.dopplr.com/ngo100
http://www.dopplr.com/mobile25
http://www.dopplr.com/mobile25
http://www.dopplr.com/group/future-of-web-apps-expo-london-2008/public
http://blog.twitter.com/2009/03/suggested-users.html
http://blog.twitter.com/2009/03/suggested-users.html
http://www.redmonk.com/jgovernor/2007/10/18/now-its-a-game-an-ibm-vs-sun-game-dopplr-meets-cagefightr/
http://www.redmonk.com/jgovernor/2007/10/18/now-its-a-game-an-ibm-vs-sun-game-dopplr-meets-cagefightr/

Figure 18-7. FriendFeed bleed-through favorites, showing an item from someone I do not follow; the
favorites come from people I do follow

Wesabe, the personal finance application, is a good example of another class of appli-
cations that relies on the private contributions of others to make the data more useful.

Figure 18-6. Suggested users from Twitter

366 | Chapter 18: Launching, Marketing, and Evolving Social Applications

These applications still benefit from the fact that friends are using the application, but
they are not sharing explicitly public information with one another.

Considering Contact Import APIs and Their Importance
The previous section showed the importance of social context, but you can accept only
one invite to a new service. So, what about the rest of your social circle? Back in Chap-
ter 14, we looked at contact-importing APIs as a means of bringing these other people
to your application. In terms of launch, there are two key needs. The first, the top
priority, is to connect people to their friends already on the site—this is more important
than bringing in new people. They need to see social value in using your application
before they will put in the effort, and their friends use of the application is a strong
endorsement. You should allow users to send invites to friends who are not already
members, but most people will want to kick the tires first before inviting friends to
something they’ve not experienced. Most people do not recommend a restaurant, film,
or book without having eaten at, watched, or read it first. So, we should not expect
social software to be any different.

This finding already active friends first approach doesn’t preclude importing address
books of contacts from other services, just that the next action should be to show those
people active on the service, rather than listing contacts for a bulk invite. The purpose
of contact import is to help your members find their friends, not increase your site
numbers. It’ll do that as well—just don’t make that the blatant goal.

Using Tools and Services for Launch and Support
There is now a whole ecosystem of products and tools that you can use to support your
new application’s launch. For instance, you can use Get Satisfaction to provide support.
A Twitter account gives you a space to talk about your product and gain informal
feedback. A blog, ideally not hosted on your hardware, gives you a place to make
announcements and to put the inevitable “we are down” status messages. Having a
dedicated status.service.com site is a great idea, but a separate blog is enough early on.

For developers, a wiki with API details, perhaps separate technical blogs, and a mailing
list will enable your developer community to talk with you and one another.

Nurturing the First Few Hundred Users
Your first few hundred sign-ups are an important subcommunity; this will be the group
of people closest to you personally and most likely the ones to try things out for you.
Think of them as a post-launch user-testing community. You can give them access to
new features a day or two ahead of launching them to the whole community. They
might feel a bit special, and you’ll get some useful feedback. Dopplr uses a range of
metrics to determine whether someone should be an alpha tester for a certain feature.
For example, some metrics include the first 1,000 people, the people with the most

Achieving and Managing Critical Mass | 367

http://status.service.com

trips, and those who successfully invited the most new users in the beta period. Each
of these metrics can be used to test different types of new functionality.

Encouraging Your Community
The best way to get new people to sign up is through a recommendation from a friend.
It will cost you nothing. If you provide the means for people to take the content they
have placed on your site and you let them put it on their websites, blogs, or Facebook
pages, many more people will know of your existence. I think many people’s first ex-
perience of SlideShare was seeing an embedded presentation (see Figure 18-8).

Figure 18-8. Gavin Bell’s Tools of Change slides as an embeddable widget from SlideShare, allowing
placement on a blog and spreading awareness of SlideShare

Encouraging your community to run face-to-face meet-ups can be effective. The Flickr
meet-ups in particular are quite fun. They work as an effective hook for the discussion

368 | Chapter 18: Launching, Marketing, and Evolving Social Applications

when there is less of an obvious connection between the members. For example,
LinkedIn or Twitter can be less self-perpetuating.

Speaking at conferences and barcamps can encourage some new people to join your
site, but the technical community there is small compared to the general population,
so you should do it more to encourage developers and perhaps get some publicity for
a release.

A barcamp is a type of conference called an unconference. It has no set
speaker list—the attendees are the speakers, and everyone has an op-
portunity to speak. They tend to be one- or two-day events, often on
weekends.

The language and iconography that you use on your site can also deliver a level of
unexpected personal connection. Your application can have personality. For instance,
Flickr is sometimes down for a “massage,” and Twitter has its famous fail whale (see
Figure 18-9).‖ The fail whale humanizes the page and deflects some of the community
irritation when Twitter is down.

Figure 18-9. The fail whale from Twitter’s maintenance page

‖ http://www.readwriteweb.com/archives/the_story_of_the_fail_whale.php

Achieving and Managing Critical Mass | 369

http://www.readwriteweb.com/archives/the_story_of_the_fail_whale.php

Evolving Your Site
The real work starts after you launch your site. A constant process of evaluation of new
ideas and iteration of features starts. Sometimes this happens very quickly. For example,
when Hunch, a new machine-learning-driven collective knowledge site, launched there
was no site-wide discussion space. A couple of weeks after the launch, a new Workshop
feature (http://www.hunch.com/teach/workshop/) was added that allowed users to ask
questions and get feedback.

Evolution is natural; no social application is ever finished. Once you
stop working on your site and developing new things, you have given up.

Remaining in Beta
In 2006 and 2007, it was common to have a “beta” badge on your site to show that it
was not the final product and that the software was still evolving. Most sites have
dispensed with such a badge. (Flickr had a humorous gamma badge for a few months.)
The badges may be gone, but the concept of being in perpetual beta is not. These kinds
of applications are never finished—they are more like services than finished products.
It is not something that you can shrinkwrap and sell for a few quarters before starting
work on version 2. Monthly release cycles and a full-time staff are now a realistic ex-
pectation for many projects. Tweetmeme, which aggregates URLs quoted from Twitter
and archives the content, started as a £500 experiment and is now consuming £10,000
per month, with a staff of four and lots of server space and bandwidth. Getting to
version 1 and going public is the easy part; sustaining the application and the com-
munity is the hard part.

Balancing Feature Requests and Issue Management
Balancing new development with bug fixes is a major challenge. In Twitter’s case, its
rapid growth meant any development was all about making it stable and not about new
features. The fact that a broad API was in place meant third parties were about to create
dozens of applications to provide the additional functionality Twitter had not provided.
Without an API, would Twitter have seen continued success? That’s hard to tell, but
without an API, it would probably have a smaller active user community.

Your application will always have a long list of bugs, from minor deprecated browser
bugs to major features that will require an overhaul to correct. How do you figure out
whether to fix the bugs or make new stuff? Get this wrong and you end up with the
sophisticated development approach called fire fighting, lots of hectic activity and little
progress. Small teams help; there should never be only one person who knows how
something works. One-month-at-a-time development plans that include bug fixing are

370 | Chapter 18: Launching, Marketing, and Evolving Social Applications

http://www.hunch.com/teach/workshop/

a good approach. Picking a main theme for each build so that you are not touching
every aspect of the application every month is also helpful.

Balancing new development with bug fixes is largely about planning and communica-
tion. Ensuring that everyone, or at least everyone’s manager, is in agreement about
what needs to be built and fixed each month will lessen the unexpected. One of the
best ways to introduce inconsistency is to change your mind in terms of functionality
late or leave planning a feature to the last minute. Software development takes time;
the later the planning runs, the less time there is to implement the feature and test it.
Bugs occur when people are forgetful or don’t understand the implications of their
decisions.

Social applications are complex, as they are highly interconnected. That tag you left on
your friend’s photo might appear in a dozen other views on the site. Unless this is
understood and documented, changing the behavior of the tag could be error-prone;
see “Determining When a Bug Is a Bug” on page 380 for more on this.

Adding Functionality
Soon after you have built and launched your application, your community will request
extra functionality. You will have more ideas, too. Retaining focus is essential at this
point. You still need to be able to describe what your application does in a couple of
sentences, but the temptation to cater to new groups will be powerful. Well-defined,
purposeful applications are better than ones that try to do too much. Even large com-
panies such as Google and Yahoo! offer a range of applications that do a single job well,
rather than a single monolithic application. In particular with social networking, tools
offering everything including the kitchen sink can seem like a good idea, but staying
small and focused provides a less complex and easier-to-understand user experience.

Twitter is well known for being the social application without a business model. It is
(sensibly, I think) taking its time to see how its community and developers are using
its application. The early shift from a microblogging application into a real-time com-
munications channel changed the needs it had for its software and gave it a different
set of content to work with. Many successful applications start out with a small feature
set and evolve it to fit the needs of their community. Dopplr started with trips and social
interactions and is developing into places. Flickr started with real-time conversations
around photography and added comments and locations.

Build Something New or Refine the Old?
Hopefully, you have built a relatively small application that offers your community two
or three useful things they can do. You now have a choice to make: do you extend the
functionality of the existing tools, or do you make a whole new feature? Refining what
you have is more difficult, but often it is the correct option. Staying your course when
all around you everyone is making helpful suggestions, sometimes quite forcefully, is

Evolving Your Site | 371

difficult. Twitter resisted the addition of groups to its product, and Flickr held out
against the constant early demands for print services, so it can be done.

You might also have internal pressures in a larger company to exhibit visible signs that
you are doing something with the funds you have. Throwing up a new section or new
piece of functionality is an easier internal sell than refining your existing product. Re-
fining can be seen as admitting you did it incorrectly in the first place. A lot of what we
do in life has a date when the event is 100% complete, such as attending a concert,
making a sale, or getting married, but social applications don’t. They need constant
refinement, like a relationship.

Having the conviction to say this is a first draft or a pilot and sticking with the need to
revise is hard, but good user experiences come from a well-honed interface, not a col-
lection of loosely linked-together first passes at functionality. However, some compa-
nies are often keen to see a launch as an endpoint and reallocate the staff elsewhere.
Fight against this instinct as hard as you can. Earlier in the book, I mentioned that you
get to launch about 40% of your budget; much of the remaining 60% should be for
refinement and extending functionality, not building new features. Find out the areas
of your application that are misunderstood or clumsy from user testing, log analysis,
or A/B testing, and improve them so that you have a firm foundation to build upon.

Adding new functionality too early will increase the complexity of your product and
decrease the likelihood of new people being able to easily understand what you are
offering. Social applications are not like shopping malls—bigger is not better.

Adding Functionality After Refining
You can’t spend all your time just refining the site you launched; at some point you
will want to add something new. Every site will add features as it grows. How you
choose what to build next is often a difficult decision, as choosing one thing almost
always means not building something else. The best kind of new functionality will be
constantly drawing attention to itself by its absence, while something that a devoted
minority are clamoring for might be a dead end.

Natural extension of your product is what to look for; something that works well with
the existing social objects and interactions that people on your site are contributing.
For Flickr, the extension to geocode pictures worked well for two reasons. People were
trying to geocode their pictures using word-based tags; for example, “London”. The
Flickr community was also worldwide, so coverage would be good. Compared to, say,
printing, where Flickr had to find a third-party company in the countries in which it
had a following, adding geocoding was a much more natural extension.

If you are adding new functionality that will result in your community having to gen-
erate a new type of content, you should pause for thought. Asking for more attention
from your community can fail; it is better to build on the existing social object

372 | Chapter 18: Launching, Marketing, and Evolving Social Applications

relationships than extend to another entirely different object type. It can work, but the
right conditions need to exist to support the extension.

Adding events is a common request on many sites, but if you are supporting
photography, events are less fundamental (core) than supporting music. Extending this
example, Last.fm is a better place to add events than Flickr is, even though both have
external events and people take photos of music concerts. Listening to music at concerts
is closer to the activity of listening to music and it maps onto the artists that make the
music. Meeting up to take some photos is a complementary activity, not a core activity
for Flickr, even if it is notionally supported by Flickr. The music social object is strongly
connected to the artist, so the experiences are linked. The same is not true for
photography; hence the call for event support as an object in Last.fm is much stronger.

You should watch your site for people making use of your tools in ways that you did
not expect. This can be a sign of several things: that you have a potential subcommunity,
that you need to build features to make that behavior easier, or that something on your
site is hard to understand or not obvious.

Orkut, the social network Google bought a few years ago, took off in Brazil, partly from
a minor feature on the site that depicted the size of country membership in direct pro-
portion to the size of the country flag. Brazilians took this as a challenge to make their
flag the biggest, and certainly larger than the U.S. flag. Orkut responded by hiring a
product manager who could speak Brazilian Portuguese so that Orkut could under-
stand its new largest community.

An interesting approach to product management is the public development road map
from Vimeo. Public road maps are a common feature in open source projects; partic-
ularly ones hosted using the Subversion repository, web-based project management
tool, Trac, which has a built-in road map feature. However, exposing your future fea-
ture list for an application that is not open source is uncommon. Many other companies
will talk about future developments in their blog; some companies will not mention
any future projects. Your community will likely have a sense of your future projects.
Communicating your next plans is a balance between overpromising and giving ideas
away to the competition. It can reduce the amount of noisy feedback you get from your
community. They will certainly have strong opinions on what you should be doing next.

Watching for What Your Community Demands
Something to bear in mind is that your most avid users are not the ones for which you
should create new features. If you follow them too closely, you risk building increasingly
specialized functionality that will not benefit the majority of your community. An often-
related idea is that you should listen to customer feedback and ignore it. You don’t
literally ignore it, but neither do you slavishly follow it. You can be led into this ap-
proach when your site is small; if a few of the noisier people on the site start publicly
asking for certain features, you rush to implement X, Y, and Z features in an effort to
meet their needs. Often, what they are asking for are small changes, but these small

Evolving Your Site | 373

http://www.vimeo.com/roadmap

changes can soak up design and development time, so be careful about saying yes too
early.

Understanding what they are asking for can be difficult. A recent essay by Matt
Gemmell, a Mac OS X and iPhone developer, described the sorts of things clients asked
him for. His MGTwitterEngine library drives most of the Twitter clients on the iPhone
and on Mac OS X. The user and developer communities for Twitter applications and
social web applications are similar; they are not filled with unintelligent people. These
people want something, but they might find it difficult to request it in the language that
is spoken inside your company:

However, in this industry in particular, there’s a tendency to talk about our clients in
(shall we say) unsympathetic terms. There’s often a knowledge gap between ourselves
and our clients (which is presumably partly why the client is using our services in the
first place), and there’s a sort of world-weary and slightly mean-spirited habit of char-
acterizing clients as stupid because of how that knowledge-gap manifests itself.#

Gemmell’s essay expands on this theme and explores half a dozen types of common
requests and what they might really be asking for. Can you just add another of those?
Can you make that configurable? Can it do X when Y occurs? These are some of the
questions he addresses.

On Nature Network, we built the snapshot, a personalized activity tracker that dis-
played the recent activity of each person’s social network. This generated a lot of activity
on the blogs with people replying to one another’s blog posts. At face value this looked
good, as there were busy blogs. However, this activity masked the fact that the forums
were quieter than we expected them to be for the level of activity on the blogs. After
analyzing what was happening, we noticed that the opportunities for someone to see
new topics on the forums were limited to looking at the page for that forum and to that
topic appearing in a member’s snapshot of the network. So, we altered the site navi-
gation to make it easier to discover new topics on the forums.

Observing the lack of something expected led us to assess how people were using the
application and to discover that we needed to change something simple, the navigation,
to make something more obvious. The second aspect is that communities of different
sizes need different navigation and tools. Early on, tools to bring people together are
useful; later tools to broaden what they can see are more appropriate.

Listening is a lot harder than it sounds. Paying attention to what your colleagues in
your company say; or to what your investors say; or to what peers say; or even your
own intuition is a lot easier. Audience feedback is a quiet background murmur. You
need to learn to hear it. You need to pick out the significant strands of conversation
and turn them into product ideas, rather than taking the well-meant suggestions at face
value. Your members are expressing a need for themselves, something they want your
application to do. It is your job to determine what to create in response, something that

#http://mattgemmell.com/2009/04/29/client-requests

374 | Chapter 18: Launching, Marketing, and Evolving Social Applications

http://mattgemmell.com/2009/04/29/client-requests

takes your business in the direction you want to go, but also something that meets their
needs.

Bear in mind, though, that your community will erroneously estimate how long some-
thing will take. Generally, it is assumed that only the user interface needs to change,
and that can’t take longer than a few days or a couple of weeks, at most. For more
stories on estimation errors, see the 37signals essay at http://www.37signals.com/svn/
archives2/revealing_hidden_assumptions_in_estimation.php.

A key difference between social web application development and more general web
application development is the closeness of the audience. On many successful social
web applications, the developers and designers are active members of the site. They
will get direct feedback and requests, plus they benefit from any feature addition.

If you and your team are active users of the site you are creating, you will see any
awkwardness and clumsy implementations firsthand. Obviously, this is not possible
for every site, but the ideal situation is that you and the rest of your team are an active
part of the community you are creating.

Delicious and Boolean search

The bookmarking application Delicious listened to its community, who were request-
ing a Boolean search tool (http://www.mail-archive.com/ydn-delicious@yahoogroups
.com/msg00485.html). They wanted the ability to combine tags so that they could make
compound queries by altering the URL—for example, spring -season to search for the
word spring, but not include any results matching the word season. This would help
someone looking for the Java framework or a metal spring. The team at Delicious spent
several weeks developing this feature and launched it to discover lower-than-expected
usage rates. A section of their community had identified something that was missing
from the site that they thought they would need, but in reality it was not a feature they
would use on a regular basis. Much of the functionality has subsequently been wrapped
into tag bundles, leaving the “ruby+gem” syntax behind. Following your early com-
munity too closely can result in creating functionality that is simply a bright idea, not
a genuinely useful feature.

Flickr printing and video

Another two examples come from Flickr. There was strong demand from the com-
munity to support printing of pictures early in the life of the website. More recently,
some of the community has requested video and others have argued passionately
against it. In both cases, the Flickr team listened and did deliver both printing and
video, but not as a simple bolt-on feature. For printing, they tested multiple suppliers
and sourced a supplier who could provide good prints and could offer the service
worldwide, not just in the United States.

For video, they spent a long time working out how to add video to the site without
disrupting the current user experience. Video can be a very dominant medium, but

Evolving Your Site | 375

http://www.37signals.com/svn/archives2/revealing_hidden_assumptions_in_estimation.php
http://www.37signals.com/svn/archives2/revealing_hidden_assumptions_in_estimation.php
http://www.mail-archive.com/ydn-delicious@yahoogroups.com/msg00485.html
http://www.mail-archive.com/ydn-delicious@yahoogroups.com/msg00485.html

Flickr has a strong community around sharing photography and engaging in conver-
sation around that photography. The time-based nature of video disrupts this flow, so
when the Flickr team added video, they limited the length to 90 seconds. They called
these videos long photos. This allows video to be added to the site, but to retain the
current interaction patterns.

Twitter and @replies

Listening to your community can drive new functionality. On Twitter, the initial ap-
proach to messaging was one-way only; there was no concept of a reply to another
message. Members of the community started to use the common message board con-
vention of using an @ symbol and a username to signify that the message was a public
reply directed at a particular person. Twitter noticed this and incorporated parsing new
messages for an @ symbol and adding the “in reply to username” text as metadata on
the message.

Keeping Up with the Competition (or Not)
Something that people will always bring to you is “Site X does Y, why can’t your site
do this too?” There are two answers to this. The first is that you should retain your
focus on what you do well. The second is remembering that you are part of the wider
Internet. Being “on” the Internet is a poor substitute for being “part of” the Internet.
Your site does not need to do everything, nor should you try to do everything. Partner
up with other providers, or use “free” services such as Yahoo! or Google Groups, to
run mailing lists.

Small pieces loosely joined was the clarion call of the early 2000s in terms of building
web applications. The portal strategies of the late 1990s had led to huge sites offering
every feature the developers could imagine. Examine your space, pick the task or au-
dience you are going to support, and build tools to cater to that task or group.

Product comparison matrices can be very useful to help direct your focus. They help
to determine how your product is different and meaningful to the audience you are
catering to. There is no magic to them: a simple spreadsheet of features, a list of com-
petitors, plus some time is all you need. Their main weakness is that they can turn into
a list of the new features you need to build. Rather than a way of differentiating, they
become a parity tracking tool to keep up with the Joneses. In some circumstances, you
do need to offer a broad range, but this is rarely in actual features; more often it is in
terms of support. For a photography application supporting new RAW file formats it
is definitely a parity service. Adding new ways to manage your photos just because site
X already has that feature might just be a form of “catch-up” and may not provide
distinctive value for your product. Ensuring you have a unique product is more im-
portant than becoming a “me too” product.

376 | Chapter 18: Launching, Marketing, and Evolving Social Applications

Supporting open standards is generally a good idea. Facebook added OpenID as an
authentication mechanism in May 2009, easily becoming the largest relying party over-
night.* Google followed Yahoo! SearchMonkey by indexing microformatted content
and making this part of its returned search results. In all three cases, these companies
watched these standards evolve, and in some cases they helped out. When the standards
had achieved sufficient adoption or maturity, they added them to their products.

Avoiding Feature-Led Development
Feature-led development, or featuritis, is a sad condition in which social web applica-
tions are afflicted with rapid feature additions and bloat. Often, this condition obscures
the original shape of the web application. Usually the condition is terminal due to
declining attention from the audience, but a harsh pruning may save the application.
Humor aside, rapidly extending the feature set of a web application is not a good idea.
You may understand where the product is heading and how the components link to-
gether, but you run the risk of alienating your initial audience and confusing newcomers
to your site.

Featuritis is a common affliction when you have a development team and designers
ready and waiting. Some of the agile methodologies almost encourage it—maintaining
a backlog and the monthly cycle of pulling new features off the list and pushing them
through the mill. Adding features to the site is not a bad thing per se, but it is important
to keep a sense of perspective as to how your site is changing and why you are adding
these features. It is important to understand how to turn these feature requests into
useful tools for your community.

For every request, there are a range of questions you need to ask to determine how this
functionality will meet the needs of the existing and any new community. Largely this
is about understanding context; actions should not happen in a vacuum. Social network
applications are full of interrelationships between people, tags, and groups. You need
to determine how your new feature fits into this landscape.

An example will help to give this reasoning some context. A popular feature discussion
for many publishers is “Can we add commenting…?” “Why add this feature” is the
most basic question, but it is hard to answer if it’s asked in such a blunt manner. The
following questions can help you get to a better understanding of the need for
commenting:

• Who is this for?

• What is the purpose?

• What is the longevity/time frame?

• What is out of scope?

* http://developers.facebook.com/news.php?blog=1&story=246

Evolving Your Site | 377

http://developers.facebook.com/news.php?blog=1&story=246

• What is the supporting workflow context?

• How will this enable community?

• What needs to change in the existing website?

• What are the dependencies?

Asking questions to understand the right context for creating new features is not about
the software. Try to take it from “I want to implement commenting” to “With com-
ments our members can do X and Y.” This mistake of picking a feature or technology
first is just the familiar retelling of a technology looking for a problem to solve. If you
cannot justify how your existing community will use the functionality, you should not
build it, regardless of any internal pressure to deliver feature X.

At the conference South by South West Interaction, held in Austin, Texas, in 2008,
Michael Lopp from Apple described features for the sake of the feature as “I want a
pony” features. Apple has pony meetings to get rid of these needless features: everyone
wants a pony, but not everyone needs a pony. A pony is best described as an internally
desired feature that can get delivered for political reasons, rather than for community
benefit. Watch out for ponies, as they need a lot of looking after.

Encouraging Data-Supported Development
A good approach to building a new feature is to base it on data you have already col-
lected or can obtain easily. Relying on your community to generate the data to support
a new feature can work, but it is a slow approach. A few examples will help explain
this more fully.

LinkedIn collected company information from people using the site for three to four
years before it launched a company directory. By doing this, it had millions of data
points, so it could deal with problems such as inconsistent names for a company. Also,
when the feature launched, it was fleshed out; many of your previous companies sud-
denly became social objects. Compare this to launching the company feature two to
three years earlier: someone would have to be the first person to create his company.
Waiting was a hard thing to do, but it was probably the right thing in this case.

Flickr experienced a similar occurrence. It could have launched places when people
started geocoding pictures, but it waited until it had hundreds of thousands of pictures
to draw on. It used hand-tagged pictures, allowing some tags to be incorrect; for ex-
ample, Reading in England got lots of pictures of books instead of the town called
Reading (apparently it is quite a studious place). Making places visible certainly en-
couraged the activity. Recently, Flickr had more than 100 million geotagged photos
and dispensed with the manual word matches on tagged photos, so the “Reading”
tagged pictures would appear only if they had been placed on a map, too (http://code
.flickr.com/blog/2009/03/16/changelog-revision-of-the-places-page-also-neighbor
hoods/).

378 | Chapter 18: Launching, Marketing, and Evolving Social Applications

http://code.flickr.com/blog/2009/03/16/changelog-revision-of-the-places-page-also-neighborhoods/
http://code.flickr.com/blog/2009/03/16/changelog-revision-of-the-places-page-also-neighborhoods/
http://code.flickr.com/blog/2009/03/16/changelog-revision-of-the-places-page-also-neighborhoods/

The final advantage of building on top of existing data is that you have something to
experiment with and, more importantly, real sample data to test against. Building a
feature that uses data that hasn’t been collected yet is not recommended. It is far too
hard to predict the data-entry patterns of thousands of people. Attempting this will
lead to features that require a lot of maintenance.

Designing your system so that you can implicitly collect data on which you might want
to create a new feature is a trick in itself. Tagging is a flexible way to collect this data.
Adding optional fields for collecting data can also work. The LinkedIn approach of
collecting workplace information as a natural part of the profile and then aggregating
this into a new object, the company, is a good example.

Making Useful Products (Experience-Led)
My opinion is that people value small coherent feature sets and appreciate incremental
changes to those features. Over the long term, you can take people a great distance
using this approach, but lurching shifts in direction will irritate or confuse your com-
munity. In Chapter 7, we explored Experience Design and Activity Theory approaches
to creating the initial product. Unsurprisingly, these approaches can be useful here,
too. Rather than focusing on the level of the feature and how that feature behaves, look
at the experiences or activities you are trying to support. Language can be clumsy in
describing the difference between these ideas, so here is an example to clarify.

If you are creating a blogging application, the activities you are supporting are blog post
creation, blog post management, and commenting management. These are the biggest
high-level tasks that people come to your application to perform. The features are the
how tasks: the details of the editor and the implementation of the comment registration
system. If you make your product design decisions with respect to the high-level tasks,
you will retain a coherency in your user experience. Getting stuck in the minutiae of
how the registration system works can lead to losing sight of the overall purpose of the
feature. Integrating new technology or arguments over support for a certain protocol
is often the source of some of these issues.

Allied to this is how you package a release of your product. If you release a connected
series of features as opposed to a set of small changes across the site, you have an easier
story to tell your users. Remember that your web application is still a small part of
someone’s total experience. Assuming that a related product will be of interest or that
an explicit connection to another service will be appreciated can fail. Someone might
be on your blogging site to write about cookery, but that doesn’t mean further cookery
services will be welcome; this person might have her recipe management elsewhere.

Integrating with other third-party services definitely has two sides. Assuming too much
technical experience—for example, that people will have a Flickr account for photo-
graphs—can make people feel excluded. So, make sure to provide a basic tool to do all
the functionality on your site. On the other hand, trying to offer all the functionality
that competitors do and not allowing any integration will also dissatisfy people. You

Evolving Your Site | 379

need to understand the broader arc of their experience, as opposed to trying to take
control or offer the sum total experience.

Determining When a Bug Is a Bug
You are probably thinking, what about bug fixes? How do they fit in with this holistic
approach? You are right, they are an issue. Bug fixes by their very nature will occur
across the entire site and can mean changes in how to implement features. There are
three rough groupings for maintenance release work. There are bugs: things that are
just plain broken, CSS or JavaScript issues with browsers, the wrong data on the page,
and so on. There are also changes to how something works, or “improvements.” And
lastly, there are feature requests masquerading as bugs. The first group is easy: fix them
and release them as quickly as you can.

The problem lies in the latter two classes. Separating the “this doesn’t work for me”
from “this should work like this” is a hard problem to solve. Bug databases are littered
with bugs that turned into whole new features for the site, as something did not work
right for someone. There is unfortunately no real cure for this, but communication and
training can go a long way. Developers can sometimes see a way to solve something
that does fix the issue at hand, but in fact adds a whole new piece of functionality.
Editorial staff members often are not aware of the boundaries between changing how
something looks on a page and how it is implemented behind the scenes, so a simple
request implies a big change to the implementation of a feature.

Analysis and estimation are very helpful in forestalling unexpected feature develop-
ment. Ideally, no decent-size bug, taking more than one day to fix, should be added to
the planned release cycle until someone has had a chance to assess what might need to
be changed and how long that might take. This pre-bug-fixing analysis does take time
and can seem like wasted effort, but it helps to avoid piecemeal development, which
can waste a lot of time and energy. Bug reports are a mine of useful information, but
purely dealing with the surface symptoms can mask an underlying problem. A series
of bug reports in a single area probably points to a feature that has been implemented
incorrectly. If these are dispatched for fixing immediately, the overview of the problem
gets lost.

An advantage that agile development practices offer is the fixed-month plan so that
developers can plan out a big feature and organize their work accordingly. A disad-
vantage is that a fixed-month plan can mean a month between releases, and bug fixing
getting low priority in that case. Entire books could be written on managing mainte-
nance and feature development, as it is such a complex area. However, using the idea
that something that does not work as planned should be fixed immediately is reasonable
to understand the concept. It is contingent on good feature planning, adequate software
test coverage, and feature testing with real data before deployment. In Chapter 16, we
looked at how to attain regular deployment schedules using these ideas.

380 | Chapter 18: Launching, Marketing, and Evolving Social Applications

The second two classes of bugs are often a sign of disagreement in terms of how the
application should be developed, particularly if they come from inside your team. They
can also come from a mismatch between the product ideas and implementation. Mov-
ing briskly through each phase of feature development with the team in the same room
is the ideal. The longer the time between feature development, design, and implemen-
tation, or the farther apart the teams sit, the more chance there is for misunderstanding
to creep into the process. This is often realized in post-hoc bug fixes which change how
the feature is implemented. Ideally, these changes are best captured as feature feedback
combined with community feedback and result in a version 2 of that feature. One or
two people saying something, even if they are internal staff members, is not usually
enough to change a feature.

Staying Focused and Coherent
Web applications should make their core intentions obvious. They should have a per-
sonality and as such resist some feature additions or changes. To avoid this means to
create software that lacks purpose. Creating this kind of focused software will attract
some groups of people and repel others, but you are more likely to generate a bond
with your community with this approach than if you use bland software. Compare
Apple Pages with Microsoft Word. Pages sets out to create pretty, short documents
with page layout at the core of the application. Word, with its long history, attempts
to offer every possible feature for the office worker, along with a dozen other roles. The
same is true of Keynote versus PowerPoint. Adding text-only posts to Flickr would
radically change the application, though virtually all the tools are in place to support
blogging on Flickr. Dopplr decided not to support trip itinerary management, focusing
instead on the social aspects of travel.

The development and design company 37signals uses the term opinionated software to
describe this approach. It helps a lot in deciding what your application should do next
if you have a strong idea of what you set out to do:

Some people argue software should be agnostic. They say it’s arrogant for developers to
limit features or ignore feature requests. They say software should always be as flexible
as possible.

We think that’s bull…. The best software has a vision. The best software takes sides.
When someone uses software, they’re not just looking for features, they’re looking for
an approach. They’re looking for a vision. Decide what your vision is and run with it.

And remember, if they don’t like your vision, there are plenty of other visions out there
for people. Don’t go chasing people you’ll never make happy.†

On Nature Network, we decided not to support nesting of discussion threads on our
message boards, as we wanted people to start new conversations, not change topic
midway through an existing conversation. Our thinking was that a later member

† Getting Real, 37signals, (http://gettingreal.37signals.com/ch04_Make_Opinionated_Software.php)

Evolving Your Site | 381

http://gettingreal.37signals.com/ch04_Make_Opinionated_Software.php

searching for information would find less value in a topic that starts with the subject
he is interested in, but then drifts off into talking about an unrelated conversation.

Planning for Redesigns and Refactoring
Inevitably, you will come to the point when you need to do a big visual redesign (a
technical refactoring) or implement a major feature that touches your entire site. A
good example is the Flickr localization project, which took many months to
complete.‡ However, Flickr remained an actively maintained site during the long de-
velopment of the localization project. This is an important concept, as mentioned in
Chapter 16; you should always be able to deploy your current trunk code so that you
can roll out a bug fix or minor feature.

Refactoring and redesigns are healthy processes to go through for your application.
They are a chance to fix early mistakes and reallocate screen space to a new behavior.
Code refactoring is easier to manage, as only one layer of the application is generally
changing.

A full redesign can be a time-consuming and exhausting experience, particularly if you
have a large application with dozens of screens. The redesign of Nature Network from
three columns to two columns (the sharp-eyed among you will have noticed this change
in the pictures in this book) took several months to agree on and plan, and then another
couple of months to implement. The most important driver in a redesign should be to
improve the user experience, though branding changes are often a driver. The reason
for the redesign of Nature Network was to increase the width of the main column of
content from 550 pixels to 740 pixels. This greatly improved the readability of the
longer stretches of text. Getting the basic grid for your site correct on the first attempt
is a good idea.

Establishing the Rhythm of Your Evolving Application
Watching people come in, fill your product with their content, chatter, and interact is
a lovely feeling. One of the most important lessons in building social applications is
that the community will feel it is their application, too. The strong communities on
Flickr and Twitter attest to this sense of bonding that their communities have with
these applications. Creating this is hard; there is no easy answer or magic feature you
can build. Keeping your application simple, dealing with troublemakers, and building
features that your community really want are a good part of the process. The best word
to describe it is a relationship. The individuals on your site are forming relationships
with one another. Early on you will be involved in getting this moving; after a time it
should be self-supporting. New members of the community are invited or drawn to the
activity. Good luck with running your own community.

‡ http://code.flickr.com/blog/2008/10/08/whats-in-a-resource/

382 | Chapter 18: Launching, Marketing, and Evolving Social Applications

http://code.flickr.com/blog/2008/10/08/whats-in-a-resource/

Summary
Getting ready for launch is stressful; launching can be a bit of a surprise, hopefully a
good one. Be thoughtful when planning your launch. Make sure you’ve got feedback
from people external to your team, because you will be too familiar with the product
to have enough perspective to see how new people will perceive it. The home page and
initial product presentation are important. They give a flavor of what awaits inside.
Decide what the appropriate experience is for people who have not yet signed up. How
much can they do without compromising privacy? Where is the value in the aggregated
public data?

Post launch, the focus moves to iteration on your core feature set. Be careful about
adding new features early on, and make sure your current application really works first.

I hope this book has helped you understand the problem you are trying to solve more
clearly and enables you to start with that small, focused application for your commun-
ity. Best of luck!

Summary | 383

Index

A
A/B testing, 97, 294
Aardvark service, 194
accounts (see user accounts)
ACM, 88
activities

creating complementary, 340
displaying recent, 165–168
distinguished from content, 226
filtering, 236–242
interoperability support, 325
managing for social networks, 139, 153
shared, 176
timestamping, 235, 328
tracking, 168–169, 374

activity pages
defined, 233
determining content, 234–236
overview, 221–222
profile pages and, 215
providing, 232–236
tracking conversations, 237–239

Activity Streams project
aggregating services, 4
development of, 287
functionality, 101, 262, 348
future of online identity, 257

Activity Theory, 94–95
activity-centered design, 134
Actor Network Theory, 94
Adactio.com site, 120
adaptation (schema theory), 71
add and confirm model, 250
add and notify model, 249, 251

add as follower requests, 254
add-as-a-contact messages, 255
Adium IM client, 325
administrators

building admin tools, 326–330
for groups, 145, 265
privacy considerations, 114
providing community support, 276
user accounts and, 320

advanced search, 104
advocacy subgroups, 270
affiliations, 197
affordance, 46
aggregated information

APIs and, 334
displaying recent actions, 166
Dopplr on, 115
groups and, 150
lifestreaming and, 135
privacy and, 111, 112–113
profile pages and, 190
river of news view, 132, 135, 150, 166
social networks and, 140

aggregators, 132
agile development method

Activity Theory and, 95
defined, 83
MoSCoW approach, 306
overview, 287
UCD and, 84–86

Agile Manifesto, 288
AIM (AOL Instant Messenger), 194, 302
Ajax

additional information, 40
queuing non-visible updates, 311

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

385

scaling support, 310
Akismet product, 348
All Rights Reserved, 122, 193
Allspaw, John, 294
alternative reality game (ARG), 130
Amazon.com site

collecting data, 58
EC2 service, 314, 326, 329, 360
Elastic Map Reduce service, 329
forms-based applications, 48
Listmania service, 161
navigation on, 226, 244
non-text-based interactions, 128
One-Click Purchase, 171
online financial transactions, 71
profile pages, 110
ratings framework, 60–62
Real Name system, 211
S3 storage service, 301

AMEE service, 182, 253
Anderson, Chris, 19, 362
Anderson, Kevin, 18
animated GIFs, 209
anonymity, 282
anticipated reciprocity, 36
AOL

identity management and, 318
importing contacts, 257
OpenId support, 212

AOL Instant Messenger (AIM), 194, 302
Apache ActiveMQ, 313
Apache Incubator project, 348
Apache Lucene project, 315, 317
Apache mod-rewrite module, 182
APIs

as core of application, 339
communication considerations, 34
comparing, 343–345
contact-importing, 367
content reuse and, 120
content search services, 334
controlling access to, 121
creating, 353
defined, 5, 333
designing, 337, 340–342
evolution of, 287
extending, 346
fine-tuning, 346
handling security, 307

incoming uses, 332
integration support, 350
openness and, 335
privacy and, 119–121
product creation guidelines, 107
querying for contacts, 257
reading content, 340
real time versus near time, 351
restrictiveness of, 352
reviewing, 345–349
running services, 334
scaling issues, 350
screen scraping and, 340
snowflake, 347
standards and, 348
Twitter support, 121, 195
types of, 333
using alternatives, 347
using others’, 352
video example, 193
wrapping calls, 346
writable, 346

Apple
10-3-1 approach, 32, 49
blogging example, 142
censorship and, 16, 278
communicating with communities, 16
delighters and, 106
iPhone product, 121
product-led communities and, 124
proprietary design approach, 89
site navigation, 244
visual design approach, 49

application pages, 47
applications (see social applications; web

applications; writing applications)
architecture of participation, 127, 162
ARG (alternative reality game), 130
artificial intelligence, 329
ASCII character set, 302
Ash, Timothy Garton, 59, 272
astroturfing, 4, 164
asymmetric follow model, 154, 250, 309
asynchronous communications, 314
Atom syndication format, 207
AtomPub protocol, 301, 348
Attribute Exchange, 319
audience

activity and viewpoints, 104–108

386 | Index

Apple communication strategies, 16
collecting feedback from, 35
different focuses of, 200
published site expectations, 158

Austen, Jane, 186
authentic media, 18
authentication

data migration and, 338
OAuth support, 136, 260
OpenID support, 377
private accounts, 339
token-based, 322
via profile pages, 271

authenticity
in blogging, 141
in managing communities, 3

automated testing, 291
avatars, 209, 320

B
baby boomers, 8
backend code

defined, 24
software design approach, 50

banning users, 280
BarCamp site, 92
barcamps, 369
Bartlett, F.C., 70
Basecamp tool, 80, 89, 174
batch processing, 314, 329
Batistoni, Simon, 303
BBC

advocacy subgroups, 271
application integration and, 336
community relationships and, 58
feature prioritization and release, 35
handling containment, 186
openness and, 335
Program Information Pages, 186
providing community support, 276
publisher-led communities and, 124
time implication example, 206
vetting conversations, 279

BDD (behavior-driven development), 292
Beck, Kent, 288, 291
Beedle, Mike, 288
behavior

API design considerations, 340
communities driving, 19

designing good, 297
encouraging good, 271
in real world, 267
interaction-based relationships and, 9–12
leeching, 146
non-standard complaints, 305
public groups, 266
rewarding good, 275
tracking, 220

behavior-driven development (BDD), 292
Berkun, Scott, 70
Berners-Lee, Tim, 179, 181, 299
bespoke products

constraints and, 90
defined, 22
software development and, 90

beta sites, 370
Biddulph, Matt, 257
BitTorrent services, 4
Blogger site

content sharing and, 131
profile pages, 110

blogging, 100
(see also microblogs)
adaptation to change, 71
API support, 333
as communication tool, 349
authenticity in, 141
calculating content size, 100
collective, 150
commenting and, 142, 143, 170
community, 142
community demands and, 374
content ownership, 142
creating systems, 142
defined, 22, 141
experience-led development, 379
for application launches, 367
functionality, 141–143
home page and, 243
lifestreaming support, 135
navigation considerations, 243
newspapers and, 58
publisher-led communities and, 124
reverse chronological order, 141, 221
rules for, 141
site planning considerations, 21
white label social software, 152

Boing Boing site, 278

Index | 387

bookmark sharing, 325
boyd, danah, 115, 126, 139
Brainstorms community, 275
branching concept, 289
British Library, 334
Brown, Ben, 274
browsers

ARG support, 130
issue management, 304
location metadata and, 201
XMLHttpRequest support, 40

Budd, Andy, 39
BuddyPress (WordPress extension), 151, 152
bug tracking

differentiating from feature requests, 306
identifying bugs, 380
site launches and, 370
tools supported, 305
writing applications and, 304–308

bug-fixing stage, 34
Build.lastfm.com service, 349
bulletin boards, 11
Bush, George W., 278
Bush, Vannevar, 88
business managers, 26
Butterfield, Stewart, 18
BY NC ND, 122

C
caching, 295, 315, 326
Campfire tool, 33, 151
Capistrano tool, 295
carbuncle design, 86
card sorting, 81, 82
Cashmore, Pete, 259
CC (Creative Commons) license, 122, 193,

334
CDDB (Compact Disk Database), 63, 184
censorship

Apple and, 16, 278
disemvoweling and, 278

centralization, 136, 139
CGI (Common Gateway Interface), 310
Champ, Heather, 18, 252, 281
change management

community managers, 75
impact of design changes, 90
internal workflow, 73
resistance, 69–73

chat service, 151
Chef tool, 295
CI (Continuous Integration), 292
citizen journalists, 9
Clarke, Andy, 39
clean URLs, 182
clickjacking, 307
CMS (content management system), 74, 142,

312
Coates, Tom, 66, 156, 158, 186, 205
Cockburn, Alistair, 288
code refactoring, 382
code review, 298–301
cognitive psychology models, 86, 88
cohesion in social networks, 163
collaboration

agile methodologies and, 288
performance hobbyists and, 135
tools for groups, 150–151

collective blogging, 150
collective identity, 164
collective intelligence, 5, 165, 326–330
commenting

adaptation to change, 71
balancing anonymity and, 282
blocking relationships and, 252
blogging and, 142, 143, 170
characteristics of good systems, 171
defined, 22, 143
moderating, 144, 277
newspapers and, 58, 143
profile pages and, 59
social networks and, 169
social software tenet on, 59
workflow changes and, 74

Common Gateway Interface (CGI), 310
communications

Apple strategies, 16
asynchronous, 314
combining agile and UCD methods, 85
content ownership, 142
during development, 33
handling moderation, 277
near-time, 91
reactions to change and, 73
social objects and, 92
teenagers and, 126
with developer community, 349

communities

388 | Index

advocacy subgroups, 270
analyzing needs, 14–20
anticipating problems, 274
Apple example, 16
attachments to, 37, 160
automating responses, 281
banning users, 280
cohesion in, 163
collective intelligence and, 5
commenting considerations, 282
content creation and, 131–132
course correction for, 278
defined, 123
determining membership method, 275
developer, 349–352
developing competition in, 130
early sign-ups, 367
encouraging, 368–369
encouraging good behavior, 271
evolutionary process, 27–29
extreme measures, 280
filtering posts, 281
flexible development with, 293
gaming, 130, 269
griefing in, 269
interest-led, 124
intervening in, 278
key management values, 3
libel and, 280
listening to demands of, 373–376
managing, 268, 281
member roles, 148
moderating, 277–278, 280
non-text-based interactions, 127–129
opening hours, 280
organized groups, 144–154
personality development, 148
privacy settings considerations, 135–139
product-led, 124
providing support, 276
publisher-led, 123
rating posts and people, 272–274
reactions to change, 71–73
removing posts, 280
rewarding good behavior, 275
separating, 270
skewing interaction via competition, 134
social applications and, 125
social microblogging, 132

starting up, 268
trolling in, 269
types of people in, 148
wait-and-see approach, 271
weak, 281

community blogging, 142
community managers, 26, 75
community-generated content, 18, 147
comp.sys.mac.advocacy group, 270
Compact Disk Database (CDDB), 63, 184
competition

developing communities via, 130
keeping up with, 376
skewing interaction via, 134

Compfight site, 343
complete data sets, 66
Concurrent Versions System (CVS), 289
conditionality, 289, 290
confirmation bias, 86
congruence (schema theory), 70
Connolly, Dan, 180
constraints

establishing, 90
time as primary, 92–91

Consumating (company), 274
consumers

Apple communication with, 16
defined, 8
determining relationship with, 93
OpenID, 212

contacts (see social contacts)
containment, 186
content

accessing via OAuth, 321
API design considerations, 340
APIs reading, 340
calculating size, 99
community-generated, 18, 147
connecting people through, 231
connecting relationship to, 200
creating, 18, 131–132
determining for activity pages, 234–236
distinguished from activities, 226
exposing to searches, 334
filtering new and existing, 239
licensing, 122, 193
linking, 188
marking ownership, 142, 188
navigation flowing from, 43

Index | 389

popularity of, 168
rating, 172, 273
reusing, 120, 347
searching by types of, 102
tagging, 146, 149, 199, 226–229, 343
user-generated, 18

content management system (CMS), 74, 142,
312

contextual inquiry, 81, 82
continual partial attention (CPA), 101
Continuous Integration (CI), 292
contributor-driven relationships, 11, 13
controlled vocabularies, 88
conversations

censoring, 278
creating with replies, 237–239
encouraging, 279
group, 145–149, 196
non-text-based, 127–129
social applications as, 93
spammers and, 252
vetting, 279
via message boards, 145–149

coordinate systems, 202
copy, 24
copycatting, 266
copywriters, 26
copywriting, 51
Costello, Eric, 29
CPA (continual partial attention), 101
craftsman approach, 89
Creative Commons (CC) license, 122, 193,

334
creeping featurism, 86
cross-site scripting attacks, 308
CrowdVine site, 177
Crumlish, Christian, 90
CSS

cross-site scripting attacks, 308
separating content from style, 302
visual design considerations, 49

Cunningham, Ward, 288
current cost meter, 182
customer-service-driven relationships, 10, 12
CVS (Concurrent Versions System), 289

D
Daringfireball.net site, 170
data migration, 338

data modeling
changing identities, 188
connecting relationship to content, 200
data-driven site design, 186
designing URLs, 179
determining social objects, 157
embedding and integration, 195
exploring groups, 196–197
future implications, 207
geolocation example, 201–205
getting to correct URL, 180
handling containment, 186
handling privacy, 197–199
identifying people, 185
issuing identifiers, 184
linking content, 188
location brokers and, 205
metadata and, 199
modeling relationships, 200–201
multiple profile pages, 188–192
placing objects on Internet, 182–184
scaling issues, 198
time implications, 206–207
video example, 192–195

data sets, complete, 66
data-driven site design, 186
deleting user accounts, 320
Delicious site

architecture of participation, 163
community demands and, 375
community interactions, 126
functionality, 15
home page on, 242, 359
marking favorites, 171
non-text-based interactions, 127
Popular page, 168
sharing on, 162
social aspects of, 93
toread tag, 130

delighter (hotel industry term), 106
Demos think tank, 9
deploying applications, 288–294
design consequences technique, 83
designing for people

activity and viewpoints, 104–108
agile and UCD methods, 84–86
attracting application usage, 36–38
cognitive psychology models, 86–88
constraint considerations, 90

390 | Index

craftsman approach, 89–90
determining social aspects, 92
economies of attention, 101
implementation considerations, 96–101
interaction design, 79–84
models of interaction, 93
search capabilities, 102–104
time for experimentation, 92–91
traditional methods, 78
user viewpoints, 95
waterfall model, 78

developer keys, 350
developers

Apple communication with, 17
defined, 25
frontend, 25, 48
managing, 349–352

development cycle
communicating during, 33
constraint considerations, 91
feature prioritization and release, 34
managing, 34
time for experimentation, 92–91
version control tools, 34

dictionary attacks, 321
Digg site

blocking relationships, 252
code review and, 298
community interactions, 126
home page on, 242
Popular page, 168, 169
rating content, 172

digital objects, tracking, 66
digital publics, 115
digital rights management (DRM), 8, 122
Discovery Channel, 65
discussion forums

advocacy subgroups, 270
Apple-based, 16, 278
post-moderated, 59
real-world behavior, 267
Timbuk2, 125
trolling on, 269
Usenet, 148
What Hi-fi, 158

disemvoweling, 278
distributed identity, 201
distributed services

aggregating, 4

API support, 5
collective intelligence and, 5
growth of, 4
real-time services, 4

do everything model, 311
Doctorow, Cory, 36
documentation

service functionality, 99
software development, 98

domain names, 214, 360
Domino’s Pizza, 4
Donne, John, 331
Dopplr social site

activity support, 153
analyzing consumption patterns, 56
architecture of participation, 163
asynchronous communication, 314
attracting usage of, 36
delighters and, 106
displaying recent actions, 166
early sign-ups, 367
editing interface, 118
email updates, 241
feature prioritization and release, 35
financing, 362
Fire Eagle example, 322
functionality, 3, 15
geolocation considerations, 204
handling containment, 186
home page on, 242, 358
identity support, 185
internal messaging systems and, 175
marketing efforts, 363
marking favorites, 171
non-text-based interactions, 129
people searches, 229, 230
person-to-person interaction, 157
private-by-default stance, 115, 200
profile pages, 189, 215
relationship models, 251, 253
search capability in, 102
sharing on, 162, 176
social aspects of, 93
social context and, 365
subscription support, 200
tracking conversations, 237, 238
URL shorteners, 183
web badges and, 347

DRM (digital rights management), 8, 122

Index | 391

Drupal social application, 22, 151, 152
Dublin core metadata, 206
dynamic pages

shifting from static, 43
visual design considerations, 39–46

Dynamic Systems Development Method, 306

E
80:20 rule, 57
eat your own dog food, 363
eBay site

online financial transactions, 71
profile pages, 110

economies of attention, 101
Economist (periodical), 58
editorial staff, 25
efficacy, sense of, 36
Elliot-McCrea, Kellan, 169, 181, 237
Ellison, Nicole, 139
email

as interface, 302
command-line interfaces and, 194
commenting and, 170
etiquette tips, 256
filtering updates, 240
group formation and, 145
handling moderation, 277
identity management and, 210, 214
internal messaging systems and, 174
intervention via, 279
links to web pages, 255
managing from multiple applications, 339
OpenID differences, 211
personal groups and, 196
security and, 255
spamming, 121, 210, 213, 229
teenagers and, 126
verification guidelines, 213
verifying invitations, 198

email address harvesting, 229
encryption, 255
energy consumption, 182, 325
Engeström, Jyri, 46, 55, 156, 325
English Cut site, 22
Equity.org site, 184
error pages, 298
escaping, 308
event and conference management, 177
EXIF format, 199

experience arc, 37, 148
experimentation, 92–91
Extensible Messaging and Presence Protocol

(XMPP), 313, 342, 350

F
Fabric tool, 295
Facebook Connect tool, 140, 151, 152, 153,

325
Facebook site

activity pages and, 236
Activity Streams initiative, 101
activity support, 139, 153
add-as-a-contact messages, 255
as centralized service, 140
as social platform, 151
authentication and, 377
collecting data, 57
critical mass and, 364
displaying recent actions, 166
evolution of, 125
internal messaging systems, 173
lifestreaming considerations, 138
machine learning and, 329
Mini-Feed feature, 71
OpenSocial and, 348
pending invitations, 255
people searches, 229, 230
personal messaging on, 276
profile pages, 215
reactions to change, 71
relationship models, 250
size of, 324
teenage members, 126

failing faster, 92
fake friends, 176
Fake, Caterina, 18
fan-based model, 251
FAQs page, 147
Farmer, Randy, 329
faving (marking favorites), 130, 171–172, 252
featuritis, 377
federation, 139, 324
feedback

collecting, 35
community demands and, 374

FETHR service, 139
FFFFOUND! site

architecture of participation, 163

392 | Index

community interactions, 126
functionality, 15, 105
marking favorites, 171
non-text-based interactions, 127

Fielding, Roy, 299, 301
filtering

activities, 236–242
fake activity, 165
on message boards, 147, 282
posts, 281
RSS feeds, 263

financing sites, 361–362
Fire Eagle service

dynamic interactions, 41
functionality, 202, 205
location metadata, 201
OAuth support, 322
privacy and, 200

fire fighting, 370
Fireball site, 322
Firefox browser, 40, 130, 304
first use experience, 36
Fitzpatrick, Brad, 256, 257
flexible development with communities, 293
Flickr social site

activity support, 153, 235
add-as-a-contact messages, 255
adding functionality, 371, 372
aggregation support, 150
analyzing consumption patterns, 55, 56
API support, 120, 332, 333, 335, 343
architecture of participation, 162
as centralized service, 140
attachments to, 159
blocking relationships, 252
community demands and, 375
community interactions, 126
connecting people through content, 231
contributor-driven nature, 11
copycatting behavior, 266
creating and nurturing relationships, 19
critical mass and, 364
data migration and, 338
data-supported development, 378
deployment on, 289
developer community and, 349
displaying recent actions, 166
encouraging community, 368
evolutionary process, 29

Explore section, 340
feature prioritization and release, 35
filtering activity lists, 236
financing, 361, 362
Flickrenes/Flickrites, 164
functionality, 3, 15
geolocation considerations, 203
Guest Pass functionality, 198
home page on, 242, 358
i18n approach, 303
identity support, 185
importing contacts, 258
integration considerations, 332, 350
interestingness rating, 64, 165, 168, 329
launch example, 18
licensing content, 122
lifestreaming considerations, 135, 138
localization project, 382
location metadata, 201
managing communities, 281
managing groups, 145, 265
marketing efforts, 363
marking favorites, 171
navigation considerations, 226
navigation on, 43, 244, 245
non-text-based interactions, 127
Organizr pages, 41
page titles, 246
people searches, 229
permalink influence, 182
perpetual beta and, 370
person-to-person interaction, 157
Popular page, 168
privacy on, 111, 112, 198, 223
profile pages, 190
providing community support, 276
pruning social networks, 200, 263
rating content, 173
reactions to change, 72
real-time services, 351
relationship models, 250, 251
responding to evolving needs, 64
RPC support, 301
search capability in, 102
setting exposure levels, 116
shape file data set, 203
sharing on, 162
sharing social objects, 155
SOAP support, 337

Index | 393

social aspects of, 92
tagging content, 227
time implications example, 206
tracking conversations, 237
URL shorteners, 183
user management and, 337
web badges and, 347
WebOps Visualizations page, 294

FlickrBugs forum, 271
Flickrenes/Flickrites, 164
FlickrIdeas forum, 271
FlickrLive chat product, 29
FluidDB, 352
focus groups, 83
FogBugz tool, 305
folksonomy, 226
Foodfeed site, 318
Ford, Henry, 81
forums (see discussion forums)
Fowler, Martin, 288
FriendFeed site

Activity Streams initiative, 101
email updates, 241
fake friends, 176
functionality, 4, 15
future implications, 208
groups as rooms, 150, 151
identity support, 318
lifestreaming considerations, 138
OAuth support, 261
sharing favorites, 130
social aggregation, 135
social context and, 365

friending considered harmful, 176
friends, 250, 252
Friendster site, 139
frontend developers, 25, 48
frontend HTML, 24, 48

G
Gall, John, 285
gaming communities, 130, 269
Ganglia monitoring system, 294
Gantt charts, 84
GarageBand, 9
Garrett, Jesse James, 29, 39, 40, 88
gazetteer, 202
Gemmell, Matt, 282, 374
Generation C, 8

genuineness in managing communities, 3
geo-URLs, 184
Geocities site, 131
geolocation, 201–205, 343, 372
Geonames.org database, 201, 202
GET request, 341, 342, 343
Get Satisfaction service

filtering posts, 282
for application launches, 367
navigation via tagging, 148
providing contact information, 258
question profiling support, 13
rating content, 273
Timbuk2 support, 125

Gibson, James J., 46
Gillmor, Dan, 9
Git tool, 4, 289, 306
GitHub tool, 349
Glass, Bryce, 329
globalization (g11n), 303
Golbeck, Jennifer, 259
Google

adding functionality, 371
AdSense ads, 331, 362
application integration and, 336
competition and, 377
content reuse and, 120
delighters and, 106
energy consumption and, 325
importing contacts, 200, 257
Jaiku purchase, 325
link element, 180
linking to internal pages, 40
OpenID and OAuth hybrid, 319
OpenSocial and, 348
Orkut purchase, 373
provenance talk to, 257
search capability in, 102
SOAP support, 337
Social Graph API product, 256
time implications example, 206
user management and, 337

Google Analytics, 326
Google Android, 190, 202
Google Code tool, 349
Google Connect tool, 140, 325
Google Docs tool, 150
Google Friend Connect tool, 151, 152, 153
Google Gmail

394 | Index

linking web pages, 255
non-password-based access, 257
OpenSocial support, 152
security considerations, 260
site launch of, 361
spam and, 121
XMLHttpRequest object, 40

Google Maps, 315
Google OpenSocial framework, 151
Google Reader, 128, 130, 167, 171
Google Search, 331
Google Social Graph API, 201
Google Talk, 194
Google Video, 257
Google Wave, 314
Google Web Accelerator, 255
GPS services, 194, 201
Gracenote database, 63, 64, 184
Greenfield, Adam, 37
Grenning, James, 288
grid references, 202
griefing, 269
groups

admin considerations, 145, 265
advocacy subgroups, 271
aggregation tools for, 150
as FriendFeed rooms, 150, 151
cohesion considerations, 164
collaboration tools for, 150–151
collective views, 196
conversations in, 145–149, 196
creating, 264
data modeling and, 196–197
defined, 196, 197
development platforms, 151–152
flexible development with, 293
invitations to, 197
invite-only, 275
managing, 145, 265
personal, 196
privacy and, 197, 264, 275
public, 196, 264, 266
social contact information, 153
supporting formation of, 144
types of, 264–265
white label social software, 152

Gruber, John, 170
Guardian (newspaper)

API support, 332

commenting and, 59, 144, 170
community guidelines, 279
time implication example, 206
website presence, 58, 143

H
Hack Day site, 92
hackable URLs, 184, 203, 328
Hadoop service, 315, 329
Hansard transcripts, 188
HAProxy tool, 295
hashtags, 28, 75
hAtom microformat, 207
Haughey, Matt, 170, 181
Hayden-Teresa Nielsen, 278
hCard microformat, 191, 257–258, 333
HCI (human–computer interaction), 88
Henderson, Cal, 169, 316
Highsmith, Jim, 288
Hoelzle, Urs, 326
Hohpe, Gregor, 285
Holmes, Thomas, 70
home pages

competition for, 225
interaction design considerations, 86
organizing, 242
overview, 355–361
private, 300
profile pages as, 214
versions of, 355
visual design considerations, 47

Horowitz, Bradley, 58
hotel industry, 106
HTML

frontend, 24, 48
separating content from style, 302
whitelisting, 308

hub-and-spoke model, 333
Huddle application, 152, 349
human–computer interaction (HCI), 88
Hunch application, 340
Hunt, Andrew, 288
Hunt, Tara, 36
hypertext information systems, 88

I
IATA (International Air Transport

Association), 184

Index | 395

iCalendar, 347
ICAO (International Civil Aviation

Organization), 184
Identi.ca service, 139, 325
Identica/Laconica project, 348
identity management

activity pages, 221–222
avoiding duplication, 338
distributed identity, 201
email and, 210
existing identities, 209
forms of identification, 210–214
identifying people, 185
identifying persistent people, 59, 110
integration and, 336–340
Internet and, 214
invisibility and, 222–223
issuing identifiers, 184
OpenID and, 23, 185, 210, 211–213, 318
passwords and, 210
privacy and, 222–223
profile pages and, 214–221
real names and, 210
screen names and, 210
user accounts, 213, 318–324

IETF (Internet Engineering Task Force), 348
iGoogle tool, 212
IM (instant messaging)

Adium client, 325
as interface, 302
collaboration tools, 151
command-line interfaces and, 194
handling moderation, 277
personal groups and, 196

importing contacts, 200, 256, 257–258, 367
in-page navigation, 226–231
indexes, 102
information architects, 26
information architecture

defined, 88
HCI and, 88
message board design, 147
navigation aspects, 88
overlapping strategies, 88

information brokers, 253
information handling

access considerations, 119–121
admin considerations, 114
aggregated views, 112–113

licensing content, 122
privacy and, 110–112
private-by-default stance, 115
setting exposure levels, 115–119

integration
APIs and, 350
application, 336
identity management and, 336–340
Internet considerations, 332
lightweight, 337
with additional services, 337

interaction design
additional information, 79
building systems iteratively, 85
capturing needs with UCD, 80–81
combining agile and UCD methods, 84–86
common UCD techniques, 82
craftsman approach, 89
defined, 77, 79
designing for experience, 80
determining social aspects, 92
message board design, 147
modeling considerations, 77
naming influences perspective, 82
overlapping strategies, 88
pattern usage in, 90
research considerations, 81
role considerations, 85
running projects, 83
washing machine model, 84

interaction designers, 26, 79
interaction-based relationships, 9–12
interest-led communities, 124
interfaces

command-line, 194
rapid user, 308
writing applications, 302–304, 308

International Air Transport Association
(IATA), 184

International Civil Aviation Organization
(ICAO), 184

internationalization (i18n), 303
Internet

as single social network, 201
common connection areas, 332
content search services, 334
integrating applications, 331
levels of identity, 214
placing social objects on, 182–184

396 | Index

XMPP messaging, 313
Internet Engineering Task Force (IETF), 348
Internet Explorer browser, 40, 304
Internet Relay Chat (IRC), 27, 33, 210
interoperability, 324, 347
interviewing, structured, 81
inventory management, 64
invisibility, identity management and, 222–

223
invitations

for community membership via, 275
pending, 255
personal, 255
relationships and, 253–255
security considerations, 255
to groups, 197
to site launches, 361

invite URLs, 197
iPhone

adaptation to change and, 71
communicating during development, 34
community demands and, 374
content reuse and, 121
email updates, 241
future implications, 208
location-aware support, 131, 201, 202
OAuth support, 323
profile pages and, 190
Tumblr support, 343

iPod, 37
IRC (Internet Relay Chat), 27, 33, 210
ISBN code, 184, 199
issue management

for developers, 349
prioritizing issues, 306
recommended labels, 306
site launches and, 370
writing applications and, 304–308

iTunes service, 54, 63
IXDA mailing list, 80

J
Jabber service, 302, 313
Jaiku

Google purchase, 325
lifestreaming support, 135, 136
near-time communication, 91
social objects, 46, 55
unsubscribe approach, 137

JavaScript API, 340, 352
Jeffries, Ron, 288
JIRA tool, 305
Jive social software, 152
Jobs, Steve, 29, 286, 296
Jones, Matt, 176
Jones, Richard, 317
journalists

Apple communication with, 17
citizen, 9

journals, 166
Joyent, 142
JPEG format, 209
JQuery JavaScript library, 85

K
Kaptelinen, Victor, 95
karma points, 272
Keith, Jeremy, 120, 132, 259, 260, 285, 297
Kern, Jon, 288
Kodak site, 109
Kollack, Peter, 36
Kotkke.org site, 170
Kottke, Jason, 181
Kuniavsky, Mike, 81

L
labs.digg.com site, 169
land grabbing, 266
Last.fm social site

activity support, 153, 221
adding functionality, 373
analyzing consumption patterns, 54, 57
architecture of participation, 162
deployment on, 289
developer tools, 349
embedding and integration, 195
functionality, 3, 15
machine learning and, 329
navigation on, 245
non-text-based interactions, 129
origins, 89
page titles, 246
people searches, 229, 230
person-to-person interaction, 157
privacy on, 112, 117, 223
recommendations from, 329
responding to evolving needs, 63

Index | 397

sharing on, 162
social aspects of, 93

LastGraph application, 195
latency, network, 199, 316
Lawrence Journal-World (newspaper), 58
Le Monde (newspaper), 142
Leontiev, Aleksei, 94
Levine, Rick, 9, 93
libel, 280
library science, 88
licensing content, 122, 193, 334
life change units, 70
life cycle

10-3-1 approach, 32
avoiding line item approach, 30
building with passion, 31
core considerations, 31
evolutionary process, 27–29
keeping applications simple, 29
planning, 27–33

lifestreaming
functionality, 135
future implications, 208
overfeeding considerations, 137–139

Likert scale, 172
line item approach, 31, 85, 96
link element, 180
link-shortening services, 181
LinkedIn site

account registration, 319
activity support, 139, 153, 235
add-as-a-contact messages, 255
data-suported development, 378
encouraging community, 369
group types, 196
OpenSocial support, 152, 349
pending invitations, 255
people searches, 230
personal messaging on, 276
privacy on, 119
profile pages, 189, 219–220
relationship models, 250
search capability in, 102

linking
content, 188
email to web pages, 255

LiveJournal.com site
privacy on, 135
setting exposure levels, 117

sharing on, 162
local graph, 242
localization (L10n), 303
location brokers, 205
location identifiers, 202
location metadata, 201–205
location-tracking systems, 202
Locke, Christopher, 93
locking technique, 279
Loki product, 201
Loopt application, 121
Lopp, Michael, 35, 378
Los Angeles Times (newspaper), 74, 280
Ludicorp, 64
Lynch, Kevin, 88

M
ma.gnolia site

bookmark sharing, 325
non-text-based interactions, 127
operation management, 295

MacDonald, Nico, 58
machine learning, 329
MacLeod, Hugh, 156
mailing lists

as communication tool, 349
for developers, 17, 349
invitation-only, 275
partnering up, 376
UCD, 83

make-believe friendship, 176
Making Light site, 278
Malik, Om, 19
Malone, Erin, 90
managing identities (see identity management)
Mann, Merlin, 141, 176
Marick, Brian, 288
marketing, 363
Marks, Kevin, 116, 181, 257
MarsEdit application, 333, 343
Martin, Robert C., 288
Mashable service provider, 73
Masinter, Larry, 299
Meadows, Donella, 95
media consumption

analyzing patterns, 54–57
collecting data, 57
evolution and style changes, 58–62
media types affecting, 53–58

398 | Index

patterns listed, 54
response to evolving needs, 62–66

Media Manager tool, 333
MediaWiki, 337
Mellor, Steve, 288
member-driven relationships, 11, 12
memcached technology, 198, 295, 316
memex, 88
Mercurial tool, 4, 289, 306
message boards

conversing in, 145–149
defined, 22
design considerations, 147
editing posts, 149
filtering on, 147, 282
group interaction via, 145, 265
interest-led communities and, 124
leeching behavior on, 146
making, 149
member-driven, 11
moderating, 149
naming influences perspective, 82
nested threads, 149
profile pages on, 148
search engine keyword analysis, 148
site planning considerations, 21
tagging content, 146, 149
text analysis of questions, 146
The Archers program, 19
trolling on, 269
vetting conversations, 279

messaging systems
internal, 173–175
rewarding good behavior, 275
scaling and, 309–317

Messina, Chris, 257, 273
metadata

data modeling and, 199
exploring groups, 196
GPS-derived values in, 194, 201
location, 201–205
search considerations, 317
video example, 192, 193

MetaFilter.com site, 109
MGTwitterEngine library, 374
microblogs

attraction to, 100
content reuse and, 121
federated services, 139

lifestreaming considerations, 138
mobile phone networks and, 325
popularity of, 132
republishing and, 132

microformats
API support, 192
content reuse and, 347
defined, 257
development of, 262
screen scraping and, 340

Microsoft, 200, 257
Mint site, 71
MobileMe, 142
mockups

implementation considerations, 96
interaction design and, 86
site planning and, 31, 32
wireframes as, 83

Model-View-Controller (MVC) paradigm, 302
modeling data (see data modeling)
moderators

defined, 145
discussion forums, 59
focus groups, 83
for commenting, 144, 277
for communities, 277–278, 280
message boards and, 149
responsibilities, 279

monitoring systems, 294
Morville, Peter, 88, 336
MoSCoW approach, 306
Movable Type Motion platform, 152
Movable Type system

i18n approach, 303
OpenID support, 212
password support, 322
popularity of, 143
response to crises, 142
TheSchwartz queuing system, 312

Mozilla browser, 40
MVC (Model-View-Controller) paradigm, 302
My name is E application, 121
MySpace site

activity management, 139
evolution of, 125
handling security, 308
OpenSocial support, 152
teenage members, 126

MySQL database, 316, 317

Index | 399

Mzinga social software, 152

N
Nagios monitoring system, 294
naming considerations, 299
Nardi, Bonnie A., 95
Nature (science journal), 15, 43
Nature Network site

activity pages and, 235
add-as-a-contact messages, 255
background, 43
collecting audience feedback, 35
community demands and, 374
displaying recent actions, 166
group types, 197
home page on, 242
identity management and, 222
internal messaging systems and, 174
invite-only groups, 275
land grabbing behavior, 266
managing groups, 265
navigation via tags, 147
page titles, 246
personal messaging on, 276
profile pages, 219–220
queuing system, 312
relationship models, 251
RSS feeds, 241
search capability, 102
staying focused, 381
tracking conversations, 237
user management and, 337

naughty room, 278
navigation

Flickr example, 64
flowing from content, 43
in-page, 226–231
information architecture considerations, 88
Nature Network example, 43
organizing for websites, 243–246
page titles, 245
recommendations, 43
site exploration considerations, 41
via tagging, 147, 227

NavTeq, 66
near time versus real time, 312, 351
Nelson, Ted, 88
nested threads for topics, 149
NetNewsWire, 167, 172, 263

Netvibes tool, 212
network effects, 309
network latency, 199, 316
New York Times (newspaper)

API support, 332
on product research, 62
podcasting support, 58
real-time feed, 351
time implication example, 206

newspapers
commenting support, 58, 143
community blogging, 142
community relationships, 58
expectations for audiences, 158
workflow changes, 74

Nginx tool, 295
NGOs, 365
Nine Inch Nails (band), 159
Ning social application, 22, 152
Nokia phones, 202
non-text-based social interaction, 127–129,

171
normalization, 199
Norman, Don, 95
norobots directive, 223
notifications, 253–255, 339

O
Oakland Crimespotting, 184
Oates, George, 18
OAuth

accessing content, 321
API design considerations, 340
authentication support, 136, 260
data migration and, 338
development of, 262, 287
functionality, 24, 212
future of online identity, 257
identity support, 318
Open Web and, 208
process flow, 323
product creation guidelines, 107
user management and, 337

Obama, Barack, 154, 363
object reference, 300
objects (see social objects)
online financial transactions, 71
online identity, 257
open source software

400 | Index

Jaiku support, 325
scratching your itch, 89
storage tools, 4

Open Web, 208
OpenID

defined, 23
development of, 262, 287
Facebook and, 377
federation activity and, 139
functionality, 212
future of online identity, 257
identity management and, 23, 185, 210,

211–213, 318
Open Web and, 208
product creation guidelines, 107
user management and, 337

OpenID consumers, 212
opening hours, 279
OpenSocial

as development platform, 151
development of, 287
future of online identity, 257
openness and, 336
overview, 348
user management and, 337

operations management, 294–296
opinionated software, 381
Orkut site, 373
Outlook Web Access 2000, 40
Oxford Union site, 19
O’Reilly Tools of Change conference, 104,

155
O’Reilly, Tim, 127

P
P2P (peer-to-peer) services, 4
Pachube service, 182, 204
page description diagram (PDD), 98
page locking, 278
Pareto principle, 57
password antipattern, 257, 259, 321
passwords

grading system, 318
identity management and, 210
verification guidelines, 213

pattern usage
for URLs, 183
in software development, 90
messaging architectures, 310

social contact formation, 154
Payne, Alex, 307
PayPal site

online financial transactions, 71
phishing, 260

PDD (page description diagram), 98
peer-to-peer (P2P) services, 4
pending invitations, 255
Penguin, 17, 131
performance testing, 315
permalinks

defined, 181, 193
importance of, 132

persistent identity
identifying, 59, 110
webmail and, 3

persistent relationships, 109
personal groups, 196
personal invitations, 255
personal messaging, 173–175, 276
personas

Activity Theory and, 95
defined, 80
product creation guidelines, 106
UCD and, 80, 83

phishing, 259, 260
Photo.net site, 109, 155
PhotoBase site, 155
Pickard, Meg, 144, 279
Ping.fm service, 194, 343
pinning technique, 279
planning sites (see site planning)
plausible deniability, 236
Plaxo (company), 259
Pluck social software, 143, 152
Plundr game, 130
podcasting

handling containment, 187
newspapers and, 58

polling versus pushing, 312
PolyPage plug-in, 85, 296
pony, 378
pool, 145
popularity lists, 168–169
portability, social networks, 256–258, 262
Portable Contacts initiative

development of, 262, 287
future of online identity, 257
importing contacts, 258

Index | 401

standard support, 348
Porter, Joshua, 244
POST request, 341, 342, 343
postal codes, 66, 202
Postel’s Law, 138
posts

editing, 149, 277
filtering, 281
rating, 272–274
removing, 280

Powazek, Derek, 18, 57, 109
Pownce site

group formation, 145
near-time communication, 91
privacy options, 115, 135
profile pages, 216
social microblogging and, 133

premoderation, 280
prioritizing issues, 306
privacy

admin considerations, 114
APIs and, 119–121
authentication and, 272
breaches of, 305
considerations for setting, 135–139
content reuse and, 120
data modeling and, 197–199
friending considered harmful, 176
groups and, 197, 264, 275
handling aggregated views, 112–113
handling information, 110–112
identity management and, 222–223
in site content sources, 234
people searches and, 229
private-by-default stance, 115
RSS feeds and, 241
scaling issues, 198
setting exposure levels, 115–119
social network sites and, 4
social objects and, 93

private messaging, 173–175
private pages, 215
pro-am movement, 8
product backlist, 287
product creation guidelines, 106
product manager, 24, 48, 79
product-led communities, 124
profile pages

activity pages and, 222

anatomy of, 214–216
as humanizing elements, 148
authenticating via, 271
connecting to content, 231
defined, 232
editing, 189
embedded applications, 349
functionality, 214
hCard microformat, 191
identifying persistent people, 59, 110
identity management and, 214–221
Mini-Feed tool and, 72
mobile versions, 190
multiple, 188–192
navigation considerations, 229
privacy considerations, 229
properties supported, 215
real-world examples, 216–221
update tracker, 165

project management
establishing constraints, 90
interaction design, 83
time for experimentation, 92

project manager, 26, 79
project members, 24
proof-of-concept, 92
prosumer, 8
prototyping

balance with designing, 288
confirmation bias and, 86
craftsman approach and, 89
implementations, 96
product creation guidelines, 107
rapid, 309
recommendations, 296
researching ideas and, 81
site planning and, 31
use cases and, 297
user interfaces, 92

proxying, 318
pruning social networks, 200
public groups, 196, 264, 266
public identifiers, 185
public pages, 215
publish/subscribe (pubsub) model, 313, 350
publisher-driven relationships, 10, 12
publisher-led communities, 123
PubSubHubbub, 314, 351
Puppet tool, 295

402 | Index

pushing versus polling, 312

Q
QA (quality assurance), 291, 299
Qik application, 138
quality assurance (QA), 291, 299
Quechup (company), 259
queuing model, 311, 313

R
RabbitMQ, 313
Radiohead (band), 159
Rahe, Richard, 70
rapid iteration of code, 89
rapid prototyping, 309
rapid user interfaces, 308
rate of change (schema theory), 71
rating

as social element, 60–62
content, 172, 273
posts and people, 272–274

RDF (Resource Description Framework), 206
real names

identity management and, 210
in people searches, 229

real time versus near time, 312, 351
real-time services, 4
ReCaptcha service, 218
recent actions, displaying, 165–168
recipe books, 105
refactoring code, 382
registration, account, 213, 319
Reichelt, Leisa, 83, 84
rel element, 181, 201, 257
relationships

add and confirm model, 250
add and notify model, 249, 251
analyzing, 7–14
as models of interaction, 93
asymmetric follow model, 250
attachment to community, 37
behavior and interaction-based, 9–12
blocking, 252
building, 160
changing over time, 263
connecting to content, 200
contributor-driven, 11, 13
creating and nurturing, 93

customer-service-driven, 10, 12
establishing, 109, 382
fan-based model, 251
Flickr levels supported, 116
information-broker-based, 253
language of connections, 252
managing, 14–20
member-driven, 11, 12
modeling, 200–201, 249–251
newspapers and, 58
persistent, 109
portability considerations, 256–258
pros and cons of, 12–14
publisher-driven, 10, 12
sending invitations, 253–255
sending notifications, 253–255
setting exposure levels, 115–119
social objects and, 156
symmetric follow model, 250

release stage, 34
releases

interaction design considerations, 85
product creation guidelines, 107

Remote Procedure Calls (see RPCs)
reputation systems, 329
reputation, sense of, 36
request tokens, 323
resistance to change, 69–73
Resource Description Framework (RDF), 206
response formats, 342
REST (REpresentational State Transfer)

API support, 337, 341
functionality, 301
Tumblr support, 343
Twitter support, 344

rev element, 181
RevCanonical application, 181
reverse chronological order

in blogging, 141, 221
marking favorites, 172

RFC 3986, 299
RFC 822, 207
RFID tag, 184
Rheingold, Howard, 275
Richardson, Leonard, 301
ripple effect, 90
river of news view

defined, 132
FriendFeed rooms and, 150

Index | 403

lifestreaming and, 135
tracking recent updates, 166

ROBOT9000 tool, 282
rooms, groups as, 150, 151
Rosenfeld, Louis, 88, 336
Royce, Winston W., 78
RPCs (Remote Procedure Calls)

API support, 337
Flickr support, 343
functionality, 301, 341

RSA (company), 213
RSS feeds

creating, 241
displaying recent actions, 167
filtering, 263
functionality, 212
integration considerations, 350
marking favorites, 172
product creation guidelines, 107
profile pages and, 189
sharing favorites, 130
social aggregation, 135
time implication example, 207
XMPP and, 314

Rubin, Dan, 72
Ruby on Rails framework

clean URLs and, 182
issue management, 304
mapping resources support, 300
rapid development and, 89
search tools, 103

Ruby, Sam, 301
Ruscoff, Doug, 155

S
Safari browser, 40, 304
Saffer, Dan, 10, 79, 89
scaling

Ajax support, 310
APIs and, 350
languages and, 315
messaging systems, 309–317
performance testing and, 315
privacy issues, 198
privacy issues and, 198

scenario planning, 80
schema theory

defined, 70
on adaptation, 71

on congruence, 70
on rate of change, 71

Schwaber, Ken, 288
scibling, 164
Scienceblogs.com, 142, 164
Scott, CP, 58
Scott, Jason, 11
Scout service, 340
scratching your itch, 89
screen names

activity pages and, 222
identity management and, 210
in people searches, 229
verification guidelines, 213

screen scraping, 340
Scrum methodology, 35, 287
searches

advanced, 104
APIs and, 334
based on location proximity, 193
considerations for applications, 317
environmental impact of, 325
for people, 229–231
identity management and, 222
implementing, 102–104
linking to internal pages, 40
product creation guidelines, 108
via keyword analysis, 148
via tagging, 227

Searls, Doc, 93
Secure Sockets Layer (SSL), 213
security

Gmail accounts, 260
handling, 307–308
OAuth and, 324
personal invitations and, 255

Seed Media publisher, 142
Seesmic application

functionality, 15
lifestreaming considerations, 138
responding to evolving needs, 65

Segaran, Toby, 165, 329
Sermo site, 275, 363
service functionality diagram, 49
Service Functionality Document (SFD), 99
SFD (Service Functionality Document), 99
shape file data set, 203
sharding databases, 316
sharecropping, 17

404 | Index

Sharkrunners game, 65, 130
Shindig (OpenSocial container), 151, 348
Shirky, Clay, 30
Short Message Service (see SMS)
shortened URLs, 181, 183
Sierra, Kathy, 106
Simple Object Access Protocol (SOAP), 337,

341
site planning

building applications, 23–24
collecting audience feedback, 35
communication considerations, 33
determining needs, 21
interaction design, 85
managing development, 34
planning life cycle, 27–33
project members, 24

sitemaps, 32, 88
Six Apart

blogging support, 142, 143
bug tracking, 307
identity management and, 318
Pownce and, 134
standardizing APIs, 348

Six to Start, 17, 131
skeleton plane, 39
sketching approach

data-driven site design, 186
in interaction design, 86
in visual design, 50
researching ideas and, 81

Skinner, B.F., 101
Skyhook Wireless, 201
skyscraper format, 244
Slashdot site, 272, 281
SlideShare site

add-as-a-contact messages, 255
contributor-driven nature, 13
embedding presentations, 347
first experience with, 368
functionality, 15
OpenSocial and, 349
WordPress support, 152

Smalltalk language, 302
smartphones, 34
Smashing Magazine site, 45
Smith, Adam, 78
Smith, Marc A., 148
SMS (Short Message Service)

command-line interfaces and, 194
handling moderation, 277
internal messaging systems and, 174
Twitter support, 27, 132

snapshots, 166
snowflake APIs, 347
SOAP (Simple Object Access Protocol), 337,

341
social applications

achieving critical mass, 363–369
activity and viewpoints, 104
applying developer tools, 292
as conversations, 93
basic components, 339
building, 3–4
challenges in building, 4
community memory, 38
community structure and, 125
defined, 22
delighters in, 106
designing, 80, 296–298
differences from web applications, 286
establishing rhythm, 382
for teenagers, 126
group types, 196
launching, 268
main types, 1
non-text-based, 127–129, 171
recognizing external identities, 3
states supported, 85
update cycle, 101

social contacts
defined, 250, 252
handling invitations, 197
importance of, 155
importing, 200, 256, 257–258, 367
social networks and, 153
spamming, 259
strength of, 249

social graph, 256
social networks

activity management, 139, 153
analyzing, 328
architecture of participation, 162–163
blocking relationships, 252
classification schemes, 226
cohesion considerations, 163
commenting and, 169
defined, 22

Index | 405

displaying lists, 165–169
federated services, 139
friending considered harmful, 176
internal messaging systems, 173–175
managing volume on, 196
marking favorites, 171–172
motivations for sharing, 159–162
origins, 139
other kinds of sharing, 177
overview, 153–154
personal maximums, 221
portability considerations, 256–258, 262
pruning, 200, 263
published site expectations, 158
rating content, 172
sharing social objects, 155–182
site navigation on, 244
subscription support, 200
tell no bad news culture, 253
web page entry points, 43

social objects
Activity Theory on, 94
additional information, 156
defined, 46, 55
determining correct, 157
determining for sites, 158
experience arc stages, 38
group aggregation tools, 150
news as, 158
placing on Internet, 182–184
product design considerations, 92
relationships and, 156
representing in data models, 179
sharing, 155–182

social psychology, 88
sock puppets, 270
software development, 35

(see also content development; interaction
design)
activity and viewpoints, 104–108
Activity Theory and, 95
activity-centered design, 134
agile method, 83
BDD-based, 292
calculating content size, 99
capturing needs with UCD, 80–81
common UCD techniques, 82
constraints in, 90
craftsman approach, 89

cyclical nature of, 140
data-supported, 378
delighters and, 106
documenting, 98
experience-led, 379
feature-led, 377
implementation considerations, 96–101
managing development cycle, 34–35
naming influences perspective, 82
one-month-at-a-time approach, 306
pattern usage in, 90
privacy settings considerations, 135–139
product creation guidelines, 106
queuing stage, 312
redesigns, 382
refactoring, 382
research considerations, 81
social platforms and, 151–152
TDD-based, 291
time for experimentation, 92–91
traditional methods, 78
user viewpoints, 95
waterfall model, 78, 84
white label social software, 152

Solr tool, 103
Souders, Steve, 326
source code storage tools, 4
South by South West Interaction conference,

378
spamming

automated messages as, 138
automated sign-ups and, 218
banning users for, 280
blocking relationships, 252
contact lists, 259
defined, 256, 259
email, 185
email addresses, 121, 185, 210, 213, 229
personal messaging and, 175
rewarding good behavior and, 276

splitting technique, 279
Spokeo site, 259, 260
Spolsky, Joel, 303
sponsorship, 362
Spool, Jared, 80
Spotify service, 307, 329
SQL injection attacks, 307
SSL (Secure Sockets Layer), 213
stack visualization, 169

406 | Index

Stamen Design agency, 169, 184
standards

APIs and, 348
creating, 349
open, 377

Stat.us, 86, 132
static pages

defined, 47
shifting to dynamic, 43

statistics, 314, 326, 328
status pages, 349
Stone, Linda, 101
storage tools, 4, 316
storyboarding, 80
Strongspace, 142
structured interviewing, 81
Stumbleupon (company), 259
subscribing to social networks, 200
Subversion, 289, 305
summary information, 111, 112–113
Summize (company), 293
surface plane, 39
Sutherland, Jeff, 288
symmetric follow model, 250, 309
systems theory, 95

T
37signals

A/B testing, 294
additional information, 51, 77
Basecamp tool, 80, 89, 174
Campfire tool, 33, 151
internal messaging systems and, 174
keeping applications simple, 30
opinionated software, 381
user-interface-first approach, 32
visual design approach, 49
WriteBoard tool, 150

tagging
collective intelligence and, 5
content, 146, 149, 199, 226–229, 343
navigation via, 147, 227
privacy considerations, 112
searches via, 227

task analysis, 82
taxonomies, 88, 226
TDD (test-driven development), 291
technology

adaptation to change, 71

Generation C and, 8
interaction-based considerations, 10

teenagers, social applications for, 126
TeleAtlas, 66
Telegraph (newspaper), 75
tell no bad news culture, 253
templates, 41, 72
test-driven development (TDD), 291
testing

A/B, 97, 294
automated, 291
conditionality, 290
TDD-based, 291
usability, 83

testing stage, 34
text (implementation element), 24
The Nethernet ARG, 130
TheSchwartz queuing system, 312
Theyworkforyou.com site, 188
third-party rights management, 350
Thomas, Dave, 288
Timbuk2 site, 125
Times (UK), 206
timestamps

aggregated information and, 132
edited comments and, 171
for activities, 235, 328
for message board edits, 149
grace period for posts, 277
marking content ownership, 188
time implication example, 207

TinyURL, 181
title tag, 245
Toffler, Alvin, 8
token-based authentication, 322
Tokyo Cabinet product, 317
Tom's Hardware, 16
topics

group conversations and, 145
nested threads, 149

toread tag, 130
Trac tool, 305
TrackBack system, 170
trendwatching.com, 8
trolling, 269
tumblelogs, 133
Tumblr service

API support, 343
content creation support, 132

Index | 407

content reuse and, 121
identity management and, 214
sharing and, 162
social aggregation, 135

Tweetie client, 223
Twitter social site

activity support, 153
add-as-a-contact messages, 255
adding functionality, 371, 372
AIM support, 194
analyzing consumption patterns, 56
API considerations, 121, 195, 332, 334,

344
architecture of participation, 163
as communication tool, 349
blocking relationships, 252
bug tracking, 307
code review and, 298
community demands and, 374, 376
connecting people through content, 231
critical mass and, 364
data migration and, 338
economies of attention, 101
encouraging community, 369
evolutionary process, 27–29
feature prioritization and release, 35
filtering activity lists, 236
financing, 362
flexible development with, 293
functionality, 3, 15
handling security, 308
home page on, 359
identity support, 185, 318
integration considerations, 332
interface support, 302
lifestreaming considerations, 135, 138
link generation and, 181
main issues, 27
managing change, 75
marking favorites, 171
mentions feature, 29
near-time communication and, 91
non-password-based access, 257
OAuth support, 260, 324
on admin accounts, 114
origins, 86, 132
people searches, 229
perpetual beta and, 370
person-to-person interaction, 157

personal messaging on, 276
popularity of, 133
privacy on, 111, 112, 135, 223
profile pages, 110, 215, 218
queuing system, 312
real-time services, 4, 351
relationship models, 250, 253
scaling issues, 198
search capability in, 102
social aspects of, 93
social context and, 365
staff accounts and, 321
teenagers and, 126
tracking conversations, 238
web badges and, 347

Twitterific client, 28, 223, 344
TypePad blogging service, 140, 214
TypePad Connect tool, 140, 151, 152

U
UCD (user-centered design)

agile method and, 84–86
capturing user needs, 80–81
common techniques, 82
craftsman approach, 89
naming influences perspective, 82
overlapping strategies, 88
research considerations, 81
running projects, 83
user viewpoints, 96

unconferences, 369
Unicode, 303
Upcoming site

community interactions, 126
functionality, 15
integration considerations, 332
lifestreaming support, 135
profile pages, 189
reactions to change, 73
sharing on, 162

update pages, 232
updates

email, 240
polling versus pushing argument, 312
queuing non-visible, 311
tracking recent, 166

urban planning, 88
URLs

clean, 182

408 | Index

common design problems, 179, 181
designing, 179
editing profile pages and, 189, 191
geo-URLs, 184
getting to correct, 180
good patterns, 183
hackable, 184, 203, 328
invite, 197
key design aspects, 299
location metadata and, 203
managing, 179
naming considerations, 299
shortened, 181, 183
video example, 192, 193

usability engineering, 80
usability testing, 83
use case, 80, 297
Usenet forum, 148, 269
user accounts

accessing content via OAuth, 321
admin users and, 320
authenticating, 339
creating, 318–324
deleting, 320
OpenID support, 318
registering, 213, 319
secure passwords, 318
verifying, 213, 318

user management, 336
user-centered design (see UCD)
user-generated content, 18
usernames

activity pages and, 222
in people searches, 229
verification guidelines, 213

UTF-16 character set, 303
UTF-8 character set, 303

V
van Bennekum, Arie, 288
Vander Wal, Thomas, 226
vCard format, 200
verification, account, 213, 318
version control

deployment and, 288–294
managing development cycle, 34

Viddler site, 65
video example, data modeling, 192–195
viewpoints

UCD and, 96
understanding, 104–108

Vignette StoryServer, 180
Vimeo site

adding functionality, 373
aggregation support, 150
bug tracking, 307
developer tools, 349
navigation on, 244, 245
responding to evolving needs, 65
video example, 192

visibility
identity management and, 222–223
relationships and, 251

visual design
copywriting and, 51
defined, 24
dynamic interactions, 39–46
essential nature of, 47
overlapping strategies, 88
page types, 47–48
product creation guidelines, 107
roles and approaches, 48–51
sketching approach, 50
software design approach, 50
visual design approach, 49
wireframes approach, 50

visual designers
as interaction designers, 79
defined, 26
page layout discussions, 48
shifting static to dynamic pages, 43

visualization, stack, 169
Vogoysky, Lem, 94
Vox site, 162, 226

W
W3C (World Wide Web Consortium), 201
washing machine model, 84
waterfall model, 78, 84
Wattson tracking device, 65
web applications, 33

(see also social applications)
avoiding line item approach, 30
building, 23–24
building with passion, 31
communication considerations, 33
constraints in, 90
differences from social applications, 286

Index | 409

figuring out the verbs, 33
information architecture limitations, 88
keeping simple, 29
managing development cycle, 34
sitemaps for, 32
UCD limitations, 88
visual design, 39–52
wireframes for, 84
with personality, 381

web badges, 347
web design (see interaction design; visual

design)
web pages

creating titles, 245
dynamic interactions, 39–46
linking emails, 255
navigation considerations, 41
partial reloads, 40
private pages, 41
shift from static to dynamic, 43
signage support, 43
visual design considerations, 47–48

webmail
non-password-based access, 257
persistent identity and, 3
phishing, 260

websites
achieving critical mass, 363–369
analyzing community needs, 14–20
architecture of participation, 162–163
cohesion considerations, 164
combining UCD and information

architecture, 88
data-driven design, 186
determining purpose, 17–18
displaying recent actions, 165–168
evolving, 370–382
expectations for audiences, 158
financing, 361–362
handling security, 307–308
identity management, 209
launching, 359–361
navigation considerations, 43, 226–231,

243–246
providing community support, 276
social network portability, 256–258
tracking what's popular, 168–169
wireframes for, 84

Weinberger, David, 93

Wesabe site, 71, 200
white label social software, 22, 152
whiteboards, 50, 86, 186
whitelisting, 308
Whuffle, 36
Wiilison, Simon, 324
wiki page, 150
Wikipedia, 180, 278
wikis

as collaboration tool, 150
defined, 22
for application launches, 367
user management and, 337

Williams, Evan, 312
Willison, Simon, 308
Windows Live, 257
Winer, Dave, 132
Wired (periodical), 206
wireframes

as mockups, 83
attaching URLs, 182
creating with PolyPage plug-in, 85
data-driven site design and, 186
differences in, 84
interaction design and, 79
PDDs and, 98
site planning and, 32
visual design and, 50

WOE data set, 201, 332
Woolf, Bobby, 285
WordPress application

BuddyPress support, 151
installing, 143
Le Monde newspaper and, 142
LinkedIn support, 152

workflow process
defined, 73
managing changes to, 74–75

World of Warcraft game, 130
World Wide Web Consortium (W3C), 201
writable APIs, 346
WriteBoard tool, 150
writing applications

agile methodologies, 287
bug tracking, 304–308
building admin tools, 326–330
code review, 298–301
data management and, 318–324
deployment and version control, 288–294

410 | Index

energy consumption, 325
federation and, 324
identity management and, 318–324
infrastructure considerations, 294–296
interface considerations, 302–304, 308
issue management, 304–308
messaging architectures, 309–317
operational considerations, 294–296
point of view, 298
scaling considerations, 309–317
search functionality, 317
starting small, 286

X
Xerox PARC, 302
XFN microformat, 201, 257
XKCD message board, 282
XMLHttpRequest object, 40, 311, 312, 346
XMPP (Extensible Messaging and Presence

Protocol), 313, 342, 350
XP methodology, 287
XRDS technology, 262
XTech conference, 257

Y
Yahoo! site

adding functionality, 371
application integration and, 336
collecting data, 58
data migration and, 338
energy consumption guidelines, 326
feature prioritization and release, 35
Flickr purchase, 72
identity management and, 318
importing contacts, 200, 257
location brokers, 205
machine learning and, 329
OpenID support, 212
providing community support, 276
RSS support, 212
SearchMonkey platform, 377
spam and, 121
user management and, 337
WOE data set, 201, 332
Zync project, 65

Yelp site, 362
YouTube site

aggregation support, 150

commenting support, 143
contributor-driven nature, 11, 13
Domino’s Pizza video, 4
financing, 361
functionality, 15
responding to evolving needs, 65

YSlow Firefox plug-in, 326

Z
Zeldman, Jeffrey, 285
Zync project, 65

Index | 411

About the Author
Gavin Bell has been playing around with the Web since 1993. He has worked in aca-
demia, designed multimedia CD-ROM applications, and worked in advertising. After
a few years at the BBC advising how to create web applications and creating systems
to represent TV and radio programs on the Web, he is now at the Nature Publishing
Group, designing social software for scientists and speaking at conferences on the social
web.

Gavin lives in London with his wife, Lucy, his sons, Oscar and Max, and their two cats.
He is looking forward to regaining family weekends, seeing friends, and writing code
to make social apps, rather than writing about them.

Colophon
The insects on the cover of Building Social Web Applications are garden spiders (Argiope
aurantia). Found largely throughout the U.S., Canada, Mexico, and Central America,
the garden spider is distinguished from other spiders by the yellow and black coloring
on its abdomen. It is not poisonous.

Female garden spiders weave a very distinctive web. It is circular and can be as wide as
two feet. At the center of the web is the stabilimentum, a conspicuous silk structure.
Only garden spiders that are active in the daytime weave webs with stabilimenta. There
are a variety of theories about the stabilimentum’s purpose, including that it camou-
flages the spider in the center of the web; it traps prey; and it helps birds spot the web
to avoid flying through it. Spiders usually spend the summer in one location and move
in early fall.

When it is time to mate, males will build a small web nearby a female’s and woo her
by plucking strands on her web. Males must always be cautious when courting, as
females are likely to attack them. Males die after mating, and females will sometimes
eat their carcasses.

Females can produce as many as four sacs, each with 1,000 eggs inside. They suspend
the sacs from the center of their webs because that is where they spend most of their
time. They guard their eggs for as long as they can, but as the weather cools, they
become weaker and usually die around the first frost. The young spiders emerge from
the sac in spring.

The cover image is from Dover Pictorial Archive. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Design As the Primary Approach
	Who This Book Is For
	Who This Book Is Not For
	What You’ll Learn
	How This Book Is Organized
	Typographical Conventions Used in This Book
	Safari® Books Online
	We’d Like to Hear from You
	How This Book Came About
	Acknowledgments

	Chapter 1. Building a Social Application
	Building Applications
	The Distributed Nature of Seemingly Everything
	Real-Time Services
	APIs and Their Importance
	Collective Intelligence: The New Artificial Intelligence

	Summary

	Chapter 2. Analyzing, Creating, and Managing Community Relationships
	Analyzing Your Users’ Relationships
	Relationships with Baby Boomers to Gen-C’ers
	Behavior and Interaction-Based Relationships
	Customer-service-driven
	Publisher-driven
	Member-driven
	Contributor-driven

	Pros and Cons of Different Relationship Types

	Analyzing the Essence of Your Community’s Needs
	Apple and Its Many Communities
	Determining Your Site’s Purpose
	Creating and Nurturing Relationships

	Summary

	Chapter 3. Planning Your Initial Site
	Deciding What You Need
	Building a Web Application
	Choosing Who You Need
	Planning the Life Cycle
	Expecting to Evolve with the Community
	Twitter
	Flickr

	Keeping Your Application Simple
	Avoiding the Line Item Approach
	Getting to the Core Quickly
	Taking Time to Plan
	Iterating
	Showing it off
	Figuring out the verbs

	Communicating During Development
	Managing the Development Cycle
	Feature Prioritization and the Release Cycle
	Choosing a Development Methodology

	Collecting Audience Feedback
	Why Would People Continue to Visit Your Site?

	Summary

	Chapter 4. Creating a Visual Impact
	Dynamic Interactions
	The Power of Partial Page Reloads
	Designing Around Community-Generated Internal Pages
	Visual Design and Navigation

	Design First
	Page Types
	Designer Roles and Team Approaches
	Visual design approach
	Software design approach
	Wireframes approach
	Sketching approach

	Copywriting
	Summary

	Chapter 5. Working with and Consuming Media
	Media Types Affect Consumption Styles
	Analyzing Consumption Patterns
	Collecting Consumption Data

	Media Evolves and Consumption Styles Change
	“comment is free”
	Amazon: Reader Reviews Encourage Purchases

	New Services Respond to Evolving Needs
	Music
	Photos
	Video

	Summary

	Chapter 6. Managing Change
	Resistance
	Schema Theory
	Congruence
	Adaptation
	Rate of change

	Web Communities and Change

	Internal Workflow
	Community Managers
	Summary

	Chapter 7. Designing for People
	Making Software for People
	Waterfalls Are Pretty to Look At

	Interaction Design
	Identify Needs with Personas and User-Centered Design
	Talking with Potential Users
	Naming Influences Perspectives

	Common Techniques for UCD
	Running Interaction Design Projects
	Using Agile and UCD Methods
	Beyond UCD
	HCI and Information Architecture
	The Craftsman Approach

	Learning to Love Constraints
	Keeping Experiments Quick
	Figuring Out the Social Aspect
	Subjects, Verbs, and Objects

	Including You, Me, and Her Over There, Plus Him, Too
	Moving Quickly from Idea to Implementation
	Explaining to Others What You Are Doing
	Creating Service Functionality Documents
	Calculating Content Size

	Don’t Let Your Users Drown in Activity
	Implementing Search
	Member-Specific Search
	Advanced Search

	Understanding Activity and Viewpoints
	Recipe Books: An Example
	Remembering the Fun

	Twelve Ideas to Take Away
	Summary

	Chapter 8. Relationships, Responsibilities, and
 Privacy
	We Are in a Relationship?
	Personal Identity and Reputation
	Handling Public, Private, and Gray Information
	Privacy and Aggregate Views
	See But Don’t Touch: Rules for Admins
	Private by Default?
	Setting Exposure Levels
	Managing Access for Content Reuse, Applications, and Other Developers
	Content Reuse
	Don’t Give Away Too Much Power
	Licensing Content

	Summary

	Chapter 9. Community Structures, Software, and
 Behavior
	Community Structures
	Publisher-Led
	Interest-Led
	Product-Led

	Supporting Social Interactions
	Non-Text-Based Social Interaction
	Competition: Making Games Social
	Content Creation and Collectives
	Social Microblogging

	Who Is Sharing, and Why?
	Competition Between Peers Skews Interaction
	Talking About Things That Are Easy to Discuss

	How Are They Sharing?
	Being Semiprivate
	Lifestreaming and Social Aggregation
	Overfeeding on Lifestreams
	A Simple Core for Rapid Growth

	Social Software Menagerie
	Blogging
	Community blogging
	Creating a blogging system

	Commenting Is Not the Same As Blogging

	Groups
	Group Formation
	Group Conversation
	Conversing on message boards
	Making message boards

	Group Aggregation Tools
	Collaboration Tools for Groups
	Social Platforms As a Foundation
	Ning and White Label Social Software
	Growing Social Networks

	Summary

	Chapter 10. Social Network Patterns
	Sharing Social Objects
	Relationships and Social Objects
	Determining the Right Social Object

	Published Sites Expect Audiences
	Deep and Broad Sharing
	Capturing Intentionality
	Cohesion
	Filtering Lists by Popularity
	Filtering Lists to Show Recent Content
	Calculating Popularity Across a Site

	Commenting, Faving, and Rating
	Commenting
	Faving or Marking As Favorite
	Rating

	Internal Messaging Systems
	Friending Considered Harmful
	Sharing Events
	Summary

	Chapter 11. Modeling Data and Relationships
	Designing URLs
	Getting to the Right URL
	Permalinks
	Putting Objects on the Internet
	Issuing Identifiers
	Identifying People
	Using Data-Driven Site Design
	Handling Containment
	Changing Identities and Linking Content
	Identity and Context-Dependent Views
	Exploring a Video Example

	Aggregating Data to Create New Content
	Exploring Groups
	Handling Groups and Privacy
	Handling Privacy and Scaling Issues

	Making the Most of Metadata
	Connecting the Relationship to the Content
	Modeling Relationships
	Entering the Geoworld
	Becoming “Brokers of the World”

	Considering Time Implications
	Looking Beyond the Web
	Summary

	Chapter 12. Managing Identities
	Existing Identities
	Forms of Identification
	Email
	Real Names Versus Aliases and Screen Names
	OpenID
	Tips for Account Registration and Verification

	The Need for Profile Pages
	Profile Page Anatomy
	Real-World Profile Pages
	Pownce
	Twitter
	LinkedIn and Nature Network
	Personal network member maximums

	Activity Pages
	Invisibility and Privacy
	Summary

	Chapter 13. Organizing Your Site for Navigation, Search, and Activity
	Understanding In-Page Navigation
	Tagging Content
	Searching for People

	Connecting People Through Content
	Providing Activity Pages
	Determining Activity Page Content

	Filtering Activity Lists and the Past
	Using Replies to Create Conversations
	Allowing for Content Initiation Versus Content Follow-Up
	Providing for Email Updates
	Creating RSS Feeds

	Who Stole My Home Page?
	Providing for Site Navigation
	Creating Page Titles

	Summary

	Chapter 14. Making Connections
	Choosing the Correct Relationship Model for Your Social Application
	Creating the Language of Connections
	Blocking Relationships

	Information Brokers
	Notifications and Invitations
	Invites and Add As Follower Requests
	Secure and Personal Invites
	Pending Invites
	Spam

	Social Network Portability
	Social Graph
	Importing Friends by the Book

	Spamming, Antipatterns, and Phishing
	Address Books, the OAuth Way
	Changing Relationships over Time
	Administering Groups
	Public or Private?
	Regulating Group Creation

	Summary

	Chapter 15. Managing Communities
	Social Behavior in the Real World
	Starting Up and Managing a Community
	Trolls and Other Degenerates
	Separating Communities
	Encouraging Good Behavior
	Authenticating Through Profile Pages
	Rating Posts and People

	Gaming the System
	Membership by Invitation or Selection
	Rewarding Good Behavior
	Helping the Community Manage Itself
	Moderating a Community
	Intervention and Course Correction
	Premoderation and Libel
	Extreme Measures: Banning Users and Removing Posts
	Absent Landlords Lead to Weak Communities
	Filtering and Automation

	Balancing Anonymity and Pseudo-Anonymity
	Summary

	Chapter 16. Writing the Application
	Small Is Good: A Reprise
	How Social Applications Differ from Web Applications
	Agile Methodologies
	Deployment and Version Control
	Testing Live Is Possible, but Use Conditionality
	Test-Driven Development
	Automated Builds Make Management Easier
	Applying Developer Tools to Social Applications
	Making Use of Flexible Development with Your Community

	Infrastructure and Web Operations
	Managing Operations

	Designing Social Applications
	Using Prototypes, Not Pictures
	Assisting Developers with Use Cases
	Designing in Good Behaviors

	Your App Has Its Own Point of View
	How Code Review Helps Reduce Problems
	The Power and Responsibility of Naming
	Being RESTful

	Beyond the Web Interface, Please
	i18n, L10n, and Their Friend, UTF-8

	Bug Tracking and Issue Management
	Tracking Tools
	Prioritizing Issues
	Differentiating Bugs from Feature Requests
	Handling Security

	Rapid User Interfaces
	Rapid Prototyping

	Scaling and Messaging Architectures
	Ajax Helps with Scaling
	Queuing Non-Visible Updates
	Real Time Versus Near Time
	Polling Versus Pushing
	XMPP Messaging
	External Processing: Scaling on the Fly and by the Batch
	Performance Testing
	Languages Don’t Scale
	Cache, Then Shard
	Fast and Light Data Storage

	Implementing Search
	Identity and Management of User Data
	OpenID for Identity
	What to Ask for on Registration
	When a User Chooses to Leave
	Admin Users
	Accessing Content via OAuth

	Federation
	Making Your Code Green and Fast
	Building Admin Tools and Gleaning Collective Intelligence
	Social Network Analysis
	Machine Learning and Big Data Sets
	Reputation Systems

	Summary

	Chapter 17. Building APIs, Integration, and the Rest of the Web
	“On the Internet” Versus “In the Internet”
	Making Your Place Within the Internet
	Why an API?
	Exposing Your Content to Search from the Internet
	Running Services, Not Sites

	Being Open Is Good
	Arguing for Your API Internally
	Implementing User Management and Open Single Sign-On
	Integrating Other Services
	Lightweight Integration Works Best
	Avoiding Data Migration Headaches
	Avoiding Duplication
	Email Notifications: Managing Your Output from Multiple Applications
	Making an API the Core of the Application
	Handling People and Objects, the Stuff of Social Applications

	Designing an API
	RPC
	REST
	XMPP
	Response Formats

	Comparing Social APIs
	Tumblr
	Flickr
	Twitter

	Reviewing the APIs
	Writable APIs
	Extending and Fine-Tuning Your API
	Wrapping API Calls
	Using API Alternatives
	Using HTML Badges
	Interoperability Is Harder with Snowflake APIs
	Sticking with Standards
	Standardizing APIs
	Using OpenSocial
	Creating a Standard

	Managing the Developer Community
	API and Scaling Issues
	Allowing Integration
	Real Time Versus Near Time for APIs
	APIs Can Be Restrictive
	Not Just Your Own API

	Create an API?
	Summary

	Chapter 18. Launching, Marketing, and Evolving Social Applications
	Loving and Hating the Home Page
	Your Site Launch
	The Soft-Launch Approach
	The Hard-Launch Approach
	Your Product Name
	A Friendly Invitation

	Financing Your Site
	Offering Premium and Freemium Models

	Marketing
	Achieving and Managing Critical Mass
	Arriving with Context
	Considering Contact Import APIs and Their Importance
	Using Tools and Services for Launch and Support
	Nurturing the First Few Hundred Users
	Encouraging Your Community

	Evolving Your Site
	Remaining in Beta
	Balancing Feature Requests and Issue Management
	Adding Functionality
	Build Something New or Refine the Old?
	Adding Functionality After Refining
	Watching for What Your Community Demands
	Delicious and Boolean search
	Flickr printing and video
	Twitter and @replies

	Keeping Up with the Competition (or Not)
	Avoiding Feature-Led Development
	Encouraging Data-Supported Development
	Making Useful Products (Experience-Led)
	Determining When a Bug Is a Bug
	Staying Focused and Coherent
	Planning for Redesigns and Refactoring

	Establishing the Rhythm of Your Evolving Application
	Summary

	Index

