TR
Accountability
fRidng
5 H R A B
Xuyingxiao@126.com

N

Example:

@ A telephone utility’s customers may be
individuals or businesses. Many aspects
of dealing with customers ‘are the same,
In which case they are treated as
parties. Where they differ they are
treated through their subtype

Telephone
Number

Person

Address

Organization

E-mail
Address

Person

Telephone
Number

Organization

E-mail
Address

Party Pattern

An abstraction of people and organizational units

@ Put.any behaviror thatiis common to
people and organizational units on
Party, only put things/particular to'one
or the other on the subtype

© When you put behavior on the subtype,
think about whether it makes sense on
the supertype

Whento use it

@ whenyou have people.and
organizations in your model and you
see common behavior

€ when you don't need to distinguish
between people and organizations. In
this case it's useful just to define a party
class and not to provide the subtypes

Main Point

@ The-main point of this pattern is to look
for it to see If you have’common
behavior, and\If so to/use the name
Party for that supertype.

% The name has become quite widely
used these days, so choosing that
name helps in communication

2. Organization
Hierarchy

Example

& Imagine a company where people work
In departments, which are organized
Into divisions.

@ An explicit,"and obvious organizational
structure.

@ each part of the structure Is a separate
class.

Disadvantages

@ Theydon't work well if'there is much
common behavior between the kinds of
organization.

® Add regions between divisions and
departments?

Solution

® Making a supertype for the organization

Organization hierarchy
Pattern

{hierarchy}

Organization

children

Associated Coffee
Makers: Organization

sales : Organization

purchasing :
Organization

Boston sales : London sales :
Organization Organization

@ The-organization hierarchy works best
when you don’t have much different
behavior between the organization
sructures

@ |t also allows you to stay very flexible if
new kinds of organizations appeatr.

Whento use it

@ Hierarchic

e because the pattern handles a hierarchy
not anything more complex:lf your needs
are more complicated you can tweak the
pattern or use Accountability

@ Affects the software

e you only need to capture the corporate
organization If it really affects what you are
doing

Sample iImplementation

{hierarchy}

Organization

children

class Organization ...
private static Map instances = new HashMap();
private String name;
void register () {
instances.put(name, this);

}

static void clearRegistry() {
instances = new HashMap();
}
static Organization get(String name) {
return (Organization) instances.get(name);

}

class Organization ...

private Organization parent;

Organization (String name, Organization parent) {
th1s.name = name:
this.parent = parent;

;

Organization getParent() {
return parent;

}

Set getChildren() {
Set result = new HashSet();
Iterator 1t = 1nstances.values().1terator();
while (1t.hasNext()) {
Organization org = (Organization) 1t.next();
if (org.getParent() != null)
if (org.getParent().equals(this)) result.add(org);

}

return result;

public Set getAncestors() {
Set result = new HashSet();
if (parent != null) {
result.add(parent);
result.addAl1(parent.getAncestors());

}

return result;

}

public Set getDescendents() {

Set result = new HashSet();

result.addAll(getChildren());

Iterator 1t = getChildren().1terator();

while (1t.hasNext()) {
Organization each = (Organization) 1t.next();
result.addAll(each.getDescendents());

}

return result;

}

public Set getSiblings() {
Set result = new HashSet();
result = getParent().getChildren();
result. remove(this);
return result;

vold setParent(Organization arg) {
assertValidParent(arg);
parent = arg;

)
J

void assertValidParent (Organization parent) {
if (parent != null)
Assert.1sFalse(parent.getAncestors().contains(this));

3. Variation: Subtypes
for Levels

@ Variation: Subtypes for lLevels

{a company is the
parent of divisions

which are parents of :
departments} therarchy}

Organization

children

{higrarchy}

Organization

/\

subsidiary

Qperating Unit Division Sales Office

{x: self parent {x: self parent {x: self parent
{self parent-=isEmpty} x->notEmpty and x.oclType = x->notEmpty and x->notEmpty and
(Operating Unit)} x.0clType = Region} x.0clType = Division}

Sample iImplementation

class Division extends Organization ...
vold assertValidParent (Organization parent) {

Assert.isTrue(parent instanceof Company);
super.assertValidParent(parent);

class Division...
Division (String name, Company parent) {

super(name, parent);
:
!

4. Aggregating Attribute

® the head company, the sales division,
and the Boston sales group all use/US
dollars as their accounting\currency.

Aggregating Attribute

- {hierarchy}
accounting currency

« aggregating»

Currency Organization

children

Whento use it

@ Thekey guestion to ask/s whether a
change in a value for a parent should
affect all the children,

e If the parent provides a default which is
adopted by a child/but subsequent
changes to the parent do not change
children with the same value, then that’s
not Aggregating Attribute

Sample iImplementation

class Organization...
Currency getAccountingCurrency() {
if (accountingCurrency != null)
return accountingCurrency;
else {
if (parent != null)
return parent.getAccountingCurrency();
else {
Assert.unreachable();
return null;

vold setAccountingCurrency(Currency arg) {
assertValidAccountingCurrency(arg);
accountingCurrency = arg;

:

I

vold assertValidAccountingCurrency(Currency arg) {
Assert.isFalse (arg == null & getParent() == null);

)
J

5. Accountability

.1 Party Further

® a supertype between the organization
and person

{hierarchy}

Organization

children

A hierarchy on Party

{hierarchy}

e

children

Person Organization

.2 different relationships
between parties

@ regional vs'functional management

e Sales In the London office have sales as
Its functional parent

e Sales in the London office have the
London office as its regional parent

functional

parent {hierarchy}

regional parent K
1 Organization

functional
children

o regional

children

{hierarchy}

@ |f you are dealing with'an organization
with a single\hierarchy; or even a
couple, then Organization‘Hierarchy is
the simplest way to deal with things.

& However larger organizations grow
beyond this.

Organization Structures

ES . RN

Organization Structures

Organization 1 Rule Operating Unit
Structure Type
1
¥ Region
* parent 1
Organization Structure
Organization <|—
Time Period
* subsidiary 1
Division
Sales Office

Modeling Principle Design a model so that the most frequent modification of the model
causes changes to the least number of types.

ﬂ:%ﬁiﬁmm%kglfﬁéﬁmMME&i%%%m%@ﬁi
ﬁ%%%ﬁ@%ﬁﬁoﬁﬂTW%ﬁﬂEﬂﬁﬁ—Aﬁﬁ%mﬁﬂ:2%
RERTWAHNHEL, FHAR BTWE21768R %5 /A, HRZEH%K
- R EE,

ﬂ:%ﬁiﬁmumkgﬁfﬁéﬁmmmm&ﬁm%%mﬁ@F&
XI55 APE21707~ R RFIRS LB, BIOTHURE A5
HIHRALEH, ENXPRAR2170™= LEFIRED L, HFEHSL gt 18
2176FR S5 /A, BRGE Fo

.3 Accountability

@ Accountabilities represent the most
powerful, and also the,most complex
way of dealing with organizational
strucutres.

Accountability

Accountability
Type

commissioner 1
Accountability

Time Period

responsible 1
Organization

Accountability
Type

sk

Accountability

@ The-previous problem

e BostonSales as a child/of\NewEngland
under the regional sturcture and a child of
Sales under the functional structure

Accountability
Type

1 child

1 parent

New England

regional :
accountability type

fiunmctional:
accountability type

BostonSales

#4: John Smith 3ACMT £, X 0] AR — PSR, ’Had
ACMZZEFE75, John Smith2H{E75, WMERDEEBAXER,

#: John Smith27K +H#i2176 R S/ MAKEIEA R, 32X 0] L3R A 2 —

TEEELRVNFTME, Hoohn Smith3 8 1402176 B8 &7\ 48 1 2% .

Bi: Mark ThurszR B REFBRORE A, X O] IR — N T
MR HERR, HhMark Thursz¥} 5 3% B 2 f 1 3%

Whento use it

& Use-Accountablility when you need to
show organizational structures but
Organization Hierarchy won't suffice.

& Accountability Is a good bit more
complicated to use than Organization
Hierarchy, so don't use it until you need
It.

Sample Code

class AccountabilityType extends mf.NamedObject {
public Accountabi IntyType(String name) {
super(name);

}
}

@ Code: Accountabllity

Accountability
Type

class Accountability {
private Party parent;
private Party child;
private AccountabilityType type;

Accountability (Party parent, Party child, AccountabilityType type) {
this.parent = parent;
parent. friendAddChildAccountability(this);
this.child = child;
child.friendAddParentAccountability(this);
this.type = type;
}
Party child() {
return child,

}

Party parent() { Accountability
return parent; Type
} 1
AccountabilityType type() {
return type;

} ’ * 1 child

Accountability

1 parent

class Party extends mf.NamedObject {

J

private Set parentAccountabilities = new HashSet();
private Set childAccountabilities = new HashSet();
public Party(String name) {

super(name);

}

void friendAddChildAccountability(Accountability arg) {
childAccountabilities.add(arg);

}
void friendAddParentAccountability(Accountability arg) {

parentAccountabilities.add(arg); [e

Type
} |

%

Accountabili

@ Code: Party

Accountability
Type

1 parent

class Party...
Set parents() {

Set result = new HashSet():

Iterator 1t = parentAccountabilities.1iterator();
while (1t.hasNext()) {

Accountability each = (Accountability) 1t.next();
result.add(each.parent());

}

return result;

}
Set children() {

Set result = new HashSet():

Iterator 1t = childAccountabilities.1terator();
while (1t.hasNext()) {

Accountability each = (Accountability) 1t.next();
result.add(each.child());
}

return result;

class Tester...
Accountab1 11tyType supervision = new AccountabilityType(Supervises’);
Party mark = new Party(mark");
Party tom = new Party(tom");
Party stMarys = new Party ('St Mary's”);
public void setUp() {

new Accountability (stMarys, mark, appointment);
new Accountability (stMarys, tom, appointment);

}
public void testSimple() {

assert(stMarys.children().contains(mark));
assert(mark.parents().contains(stMarys));

@ you-often need to carry out navigation
along a single accountability type

class Party...
Set parents(AccountabilityType arg) {
Set result = new HashSet();

Iterator 1t = parentAccountabilities.iterator();
while (1t.hasNext()) {

Accountabi11ty each = (Accountability) 1t.next();
if (each.type().equals(arg)) result.add(each.parent());

3
J

return result;

class Tester...

Accountabi I1tyType appointment = new Accountabil1tyType(Appointment™);
public void testParents() {

Accountab1 I1ty.create(tom, mark, supervision);

assert(mark.parents().contains(stMarys));

assert(mark.parents(appointment).contains(stMarys));

assertbquals(2, mark.parents().size());
assertbquals(l, mark.parents(appointment).size());
assertbquals(l, mark.parents(supervision).size());
assert(mark.parents(supervision).contains(tom));

 — — —

6. Accountability
Knowledge Level

»
EIH

/

IR LWH 2R i) 2RI 2 15 2, HIN
B INE 44>
® 5| NFIHR kA H

=

Modeling Principle Explicitly divide a model into operational and knowledge levels.

9 %
x:self Accountability «
X.commissioner.type € x.type.commissioners

and
x responsible type € x.type.responsibles

x: self. Accountability
x.type.commissioners->includes (x.commissioner type)
and x type.responsibles-=includes (x.responsible.type)

Accountability
Type

commissioners 1..*

knowledge level

operational level

Accountability

responsibles 4 «

commissioner 1

Time Period

responsible 1

ﬁ:Eﬁ?@ﬁiﬂ%ﬁﬂﬁ¢%ﬂoBﬂum*¢8ﬁ¥ﬁﬁ%m

m&%%&%%ﬂ,ﬂ¢§&ﬁiﬁﬁ¥ﬁa,ﬁﬁﬁ%%ﬂo
ﬂ:%%ﬁﬂﬂﬁi%ﬂﬁﬁ%ﬁ.ﬁ¢§ﬁﬁ%§%.ﬁﬁﬁ%%io

@ Add-Connection Rules

e Connection rules provide'a simple yet very
flexible form of knowledge level.

e Each accountability type contains a group
of connection rules each of which defines
one legal pairing of parent and child party

types.

Accountability
Type

- checks validity of
accountabilites

Connection Rule

% %

allowed parent allowed child

1

L

Accountability

Time Pernod

'|
|
I
|

{the accountability type must have a
connection rule where the parent's
type is the allowable parent and the
child's type is the allowable child

Org Type_ld Org Type Name Org Struct_Type_Id Org_Struct Type Name
3 B &

ﬂ_ -:.,,i_-::
| 6 [4 ~~ [PuDong [E&% |

Organization3 StructureRule

Org_Struct_Type_Id | Parent_Org_Type_lId | Child_Org_Type_Id | Child_Org_Number

999999

999999

Organization3 Structure

Org_Struct_Type_Id Parent_Org_Id Child_Org_lId
2 (HEE0NE) |

Exercise

@ two-accountability types

e The appointment accountability type allows
consultants and doctors to be appointed to
hospitals.

e The patient care accountablllty type
records cons
patient

doctor : Party Type

allowable
child

: connection rule

patient : Party Type

allowable
parent

allowable
parent

appointment:
accountability type

hospital : Party Type

allowable
parent

: connection rule

allowable
child

: connection rule

allowable
child

‘ patient care:
accountahility type

consultant : Party
Type

 — — —

Accountability
Type

-- checks validity of
accountabilities

1

X

Accountability

Connection Rule

k%

allowed parent 1 1

allowed child

Time Period

{the accountability type must have a
connection rule where the parent’s
type is the allowable parent and the
child's type is the allowable child

class PartyType extends mf.NamedObject {

public PartyType(String name) {
super(name);

}
}

class Party ...
private PartyType type;

public Party(String name, PartyType type) {
super(name);
this.type = type;

}

PartyType type() {
return type,

}

Accountability

Type
Connection Rule

-- checks validity of
accountabiliies /
* K

1

allowed parent | 1 1 allowed child

Party Type

name

1

% %

Accountability

Time Period

{the accountability type must have a
connection rule where the parent’s
type is the allowable parent and the
child's type is the allowable child

@ Rules

class ConnectionRule {
PartyType allowedParent;
PartyType allowedChild;
public ConnectionRule(PartyType parent, PartyType child) {

this.al lowedChild = child;
this.al lowedParent = parent;

Accountability
Type

%

-- checks validity of
accountabilities

1

X

Accountability

> Connection Rule

allowed parent

* %
11

allowed child

Party Type

name

1
x

Time Period

{the accountability type must have a
connection rule where the parent’s
type is the allowable parent and the
child's type is the allowable child

@ Add-rules to the accountabllity type

class ConnectionAccountabi l1tyType extends AccountabilityType ...
Set connectionRules = new HashSet():
publ1c ConnectionAccountabil1tyType(String name) {
super(name);

}

vold addConnectionRule (PartyType parent, PartyType child) {
connectionRules.add(new ConnectionRule(parent, child));

1

class Tester...

private PartyType hospital = new PartyType(“Hospital™);
private PartyType doctor = new PartyType("Doctor"”);
private PartyType patient = new PartyType("Patient”);
private PartyType consultant = new PartyType("Consultant”);
private ConnectionAccountabilityType appointment

= new ConnectionAccountabilityType("Appointment”);
private ConnectionAccountabil1tyType supervision

= new ConnectionAccountabili1tyType("Supervises”);

public void setUp()...
appointment.addConnectionRule(hospital, doctor);
appointment.addConnectionRule(hospital, consultant);
supervision.addConnectionRule(doctor, doctor);
supervision.addConnectionRule(consultant, doctor);
supervision.addConnectionRule(consultant, consultant);

mark = new Party("mark", consultant);
tom = new Party("tom", consultant);

] n

stMarys = new Party ("St Mary's

, hospital);

Object Diagram?’

Interaction-- validation
@ static

- checks validity of
accountabilities

allowed child

__ﬁ.

2k 1

{the accountability type must have a
connection rule where the parent's
type is the allowable parent and the
child's type is the allowable child

Accountability

Accountability Type

appointment :

e

1

can create
|

a connection rule

can create accountability |

=

retum result

T—

*is valid

1
are valid party types
J

. |

| [result is true] new

1

new Accountability

class Accountability...
static boolean canCreate (Party parent, Party child, AccountabilityType type) {
if (parent.equals(child)) return false;

if (parent.ancestorsInclude(child, type)) return false;
return type.canCreateAccountability(parent, child);

}

@ The accountability type can now check
the parent and the child through the
connection rules.

class AccountabilityType...
boolean canCreateAccountability(Party parent, Party child) {
return areValidPartyTypes(parent, child);

}

class ConnectionRuleAccountabt I1tyType...
protected boolean areValidPartyTypes(Party parent, Party child) {
Iterator 1t = connectionRules.1terator();
while (1t.hasNext()) {
ConnectionRule rule = (ConnectionRule) 1t.next():
if (rule.isValid(parent, child)) return true;

}

return false:

}

class ConnectionRule...
boolean 1sValid (Party parent, Party child) {
return (parent.type().equals(allowedParent) &&
child. type().equals(allowedChild));

class Tester...
public void testNoConnectionRule() {
try {
Accountability.create(mark, stMarys, appointment);

fail("created accountability without connection rule");
} catch (Exception 1gnore) {}
assert(!stMarys.parents().contains(mark)); // am I paranoid?

Party Type
Generalizations

{x: self. Accountability
x.commissioner-=all Types-=intersection (x.type.commissioners->notEmpty
and x.responsible-=all Types->intersection (x.type.responsibles }-=>notEmpty}

supertype

COMMISSIONers

Accountability
Type

responsibles q »

knowledge level

operational level (all types

-1 Denvation:
self type and all self

* type's supertypes

 — — —

Hierarchic
Accountability Type

Accountability
Type

{party may be responsible to only
Hierarchic one accountability of this type)
Accountability

Type

class AccountabilityType...
boolean canCreateAccountability(Party parent, Party child) {
return areValidPartyTypes(parent, child);

}

class ConnectionRuleAccountabi 11tyType...
protected boolean areValidPartyTypes(Party parent, Party child) {
Iterator 1t = connectionRules.1terator();
while (1t.hasNext()) {
ConnectionRule rule = (ConnectionRule) 1t.next();
if (rule.isValid(parent, child)) return true;

}

return false;
}
class AccountabilityType ...
private boolean isHierarchic = false;
vold beHierarchic() {
1sH1erarchic = true;

}
boolean canCreateAccountability(Party parent, Party child) {
if (isHierarchic && child.parents(this).size() != @) return false;

return areValidPartyTypes(parent, child);

Levelled Accountability Type

@ An example of this Is a.regional

breakdown where national parties have
children that are states, which have
children that are counties, that have
children that have cities.

private PartyType nation = new PartyType(nation’);
private PartyType state = new PartyType('state”);

private PartyType county = new PartyType(county");
private PartyType city = new PartyType(city’);

Levelled Accountability

Accountability
Type

f ‘_\ woverlapping»

Leveled Hierarchic
Accountability Accountability
Type Type

{party may be responsible to only
a party whose party type is the
next in the levels list)

{party may be responsible to only
one accountability of this type}

 — — —

Accountability
Type

party type
rules

Leveled
Accountability

levels Type
{list}

Hierarchic
Accountability

Type

hierarchic

commissioners
* 1.*
Directional
Accountability

.
it * 1.*

responsibles

Location

Accountability

Operating Scope

B

Clinical Care
Scope

Protocol
Scope

Resource
Provision

amount : Number amount : Quantity

Sales
Territory

Observation
Concept

*

Protocol

Resource
Type

Product
Type

Organization

