

http://jpkc.fudan.edu.cn/s/426/main.htm

The Urinary System

Prof. Hong CHEN MD, PhD 陈 红 教授 博士

Office: Building 9 E., Room 304 Tel: 54237019-9304 Mobile: 18602109425

Email: <u>hchen30@hotmail.com</u> <u>hchen@graduate.hku.hk</u>

General Functions of Urinary System

Urine production

- Remove metabolic wastes from blood by filtration
- Regulate the balance between water and electrolytes by
 - Re-absorption of water and electrolytes selectively
 - Excretion of urea, uric acid, creatinine etc.
- Secretion of certain enzymes or cytokines
 - Renin: to regulate the blood pressure
 - Erythropoietin: to stimulate RBC production

Objectives

Kidney

- Structure and function of
 - Nephron and uriniferous tubule
 - Filtration barrier
 - Podocyte and mesangial cells
 - Juxtaglomerular complex
- Ureter
- Urinary bladder

General structure (1)

- Hilum: vessels, ureter-renal pelvis, major and minor calices
- Capsule: collagen
- Lobes: 8-18 each
- Cortex: darker, more
 "granular", renal corpuscles
- Medulla: paler, renal tubules but not renal corpuscles; vasa recta
- Pyramids: part of medulla, <u>base</u> is closely adhered to cortex, rounded <u>apex</u> [papilla] towards minor calyx

Dec. 18, 2017

General structure (2)

 Medullary rays: striations of medulla extend into cortex, collecting tubules/ducts, PST, DST(TAL).

- Renal columns: cortical tissue extending into medulla, usually between lobes
- Major vessels, via renal columns into kidney

5

Vascular Supply of Kidney

Dec. 18, 2017

Microvasculature of the renal cortex

- G: glomerulus
- A: afferent arterioles
- I: interlobular arteries

PT: peritubular capillaries

Question 1

Urine production

Remove metabolic wastes from blood by filtration ?

- Regulate the balance between water and electrolytes
 - Re-absorption of water and electrolytes selectively
 - Excretion of urea, uric acid, creatinine etc.
- Secretion of certain enzymes or cytokines
 - Renin
 - Erythropoietin

Key point to answer question 1

- Elaborate the following contents:
- Structure and function of nephron and renal corpuscle.
- Structure and function of podocyte, filtration barrier, and mesangial cells.

The Nephron

- Structural and functional unit [yellow]
- Consists of:
 - Renal corpuscle (1)
 - Proximal convoluted tubule, PCT (2)
 - Loop of Henle (3-6)
 - Thick descending limb, PST (3)
 - Thin segment (4,5)
 - Thick ascending limb, TAL (6)
 - Distal convoluted tubule, DCT (8)
- Cortical nephron: with short thin segment, it loops back in outer medulla region
- J<u>uxtamedullary</u> nephron: with long thin segment, it loops back in inner medulla region

Renal Corpuscle

- Flow rate: 1300ml/min through renal glomeruli
- Glomerular filtrate is formed at a rate of 125ml/min
- From this, only 1ml/min of urine is produced
- 124ml/min is absorbed Dec. 18, 2017

- Two poles: Vascular & Tubular
- Bowman's capsule
 - Parietal layer: simple squamous epithelium
 - Visceral layer: podocytes
- Glomerulus
 - Tufts of fenestrated capillaries closely surrounded by podocytes derived from visceral layer of Bowman's capsule
- Bowman's space
 - Collection of ultrafiltrate

Renal Glomerulus

- Derived from afferent arteriole
- Drained by efferent arteriole
- Capillaries are fenestrated type
- Surrounded by podocytes
- Mesangial cells
- High pressure coming from the thicker diameter of afferent compared to efferent arteriole.

Glomerular capillaries, podocytes and mesangial cells

Podocytes:

- 1. Derived from visceral layer
- 2. Specialized to have many long cytoplasmic processes
- 3. Provide support for capillaries
- 4. Contribute to filtration barrier

SEM of Glomerular capillary

Note: The close interdigitating nature of foot processes of podocytes is wrapping around the outer surface of the capillary.

Dec. 18, 2017

Filtration Barrier

- 1. Fenestrations of capillary endothelium to block cells
- 2. Basal lamina, GBM (fused from basal lamina of endothelium and podocyte), to restrict large proteins (>70KD) by the meshwork of cross-linked collagen and proteoglycans, and organic ions by negative charges of polyanionic GAGs.
- 3. Podocyte pedicels (foot processes), filtration slits with diaphragm (containing nephrin), to restrict small proteins and organic ions.
 - Arrow indicates direction of filtration

Glomerular capillaries, podocytes and mesangial cells

Mesangial cells:

- 1. Resemble to pericytes in producing components of external lamina
- 2. Phagocytic cells
- 3. Mildly contractile
- 4. Maintain the wellness of basal lamina (GBM) of glomerulus
- 5. Cytokine secretion

Glomerular capillaries, podocytes and mesangial cells

Renal Corpusle

Dec. 18, 2017

2 na Na Or Sno

Dec. 18, 2017

Functions of Renal Corpuscle

- Filtration of blood
- Glomerular ultrafiltrate
 - No cells
 - Very little if any proteins
 - Sugars
 - Electrolytes
 - Fluid
- Collected in Bowman's space

Drained to proximal convoluted tubule (PCT)

Question 2

Urine production

 Remove metabolic wastes from blood by filtration

Renal Corpuscles

- Regulate the balance between water and electrolytes ?
 - Re-absorption of water and electrolytes selectively
 - Excretion of urea, uric acid, creatinine etc.
- Secretion of certain enzymes or cytokines
 - Renin
 - Erythropoietin

Key point to answer question 2

Structure and function of renal tubules.

- Proximal convoluted tubule, PCT (2)
- Loop of Henle (3-6)
 - Thick descending limb, PST (3)
 - Thin segment (4,5)
 - Thick ascending limb, TAL (6)
- Distal convoluted tubule, DCT (8)
- Structure and function of uriniferous tubules.
 - Renal tubules
 - Collecting tubules/ducts

Nephron Components

- Long and convoluted, more numerous in XS profile
- Cytoplasm strongly eosinophilic
- Luminal brush border, MV under EM, increase surface area for reabsorption
- Basal striations, basal infoldings of membrane and concentration of mitochondria
- No distinctive cell border due to extensive lateral membrane interdigitations, with channels, <u>aquaporins</u>, for water transport
- Relatively few nuclei/cross sectional profile

Proximal convoluted tubule

Peritubular connective tissue Vessels

Dec. 18, 2017

Proximal convoluted tubule:

1. Basolateral interdigitations

ubule, l ro nal J Convoluted

Dec. 18, 2017 Prof. Hong CHEN, Fudan University Shanghai Medical College

- Shorter than PCT, thus less numerous in section
- Cuboidal cells, more palely stained
- Cells have no brush border
- With more distinctive border
- Smaller cells, thus more cells per profile
- Response to aldosterone
- Begins distal to macula densa
- End of DCT signals end of nephron

Distal Convoluted Tubules

Dec. 18, 2017

Distal convoluted tubule

- Basically no microvilli, thus smooth luminal border;
- Basal infoldings with aquaporins of different types;
- Nuclei located near luminal border

Dec. 18, 2017

Functions of Distal Convoluted Tubules

Reabsorption of

- Na⁺ and secrete K⁺
- biocarbonate ions

Secretion of ammonium

- Response to aldosterone from adrenal cortex
 - Increase reabsorption of Na⁺
 - Increase secretion of K⁺

Characteristic features of proximal and distal convoluted tubules

Proximal convoluted tubules

- Long more numerous in section
- Thicker wall
- Smaller lumen
- Numerous microvilli
- Indistinct cell boundary
- Acidophilic cytoplasm
- Fewer nuclei per XS of tubule
- Found in cortex
- Basolateral membrane interdigitation
- Numerous mitochondria

Distal convoluted tubules

- Shorter less numerous in section
- Thinner wall
- Larger lumen
- No brush border/MV
- More distinct cell boundary
- Less acidophilic cytoplasm
- More nuclei per XS of tubule
- Found in cortex
- Basolateral membrane interdigitation, less extensive
- Numerous mitochondria
- Response to aldosterone

Loop of Henle

- Hairpin shape
- Thick descending limb or segment, similar to PCT
- Thin segment (T), squamous cells with bulging nuclei
- Thick ascending limb or segment (A), similar to distal convoluted tubule
- Re-absorption of fluid through "counter-current" mechanism [working closely with medullary capillary plexus, vasa recta, in the interstitium];
- Secretion of hyperosmotic urine.

Loop of Henle

Dec. 18, 2017

Uriniferous tubule

Collecting tubule

Collecting duct

Dec. 18, 2017

Collecting tubule

- Similar to DCT, with larger lumen
- Response to ADH [antidiuretic hormone, vasopressin]
- Not part of nephron as they are derived from <u>ureteric</u> <u>bud</u>
- In cortex and in medulla
- Many in medullary rays
- Cells with pale staining cytoplasm
- Tubules join to and form collecting ducts

Collecting tubules

Dec. 18, 2017

Collecting tubules

Medulla

Capillaries (vasa recta) Thin segment of Henle's loop

Dec. 18, 2017

Collecting ducts

Collecting ducts

Dec. 18, 2017

Collecting tubule/duct

Dec. 18, 2017

Structural differences of various segments of uriniferous tubules

Dec. 18, 2017

Question 3

Urine production

Remove metabolic wastes from blood by filtration
 Renal Corpuscies

- Regulate the balance between water and electrolytes
 - Re-absorption of water and electrolytes selectively
 - Excretion of urea, uric acid, creatinine etc.

Renal tubules & collecting tubules/ducts

- Secretion of certain enzymes or cytokines ?
 - Renin
 - Erythropoietin

Key point to answer question 3

- Elaborate the following contents:
 - Structure and function of Juxtaglomerular complex.
 - Structure and function of interstitium

Juxtaglomerular Apparatus

Juxtaglomerular (JG) cells

- 1. Modified smooth muscle cells of afferent arteriole
- 2. Secrete renin (activates angiotensin II)

Afferent arteriole

Lacis cell, L-

- 1. Extraglomerlar mesangial cells
- 2. Function not well understood
- 3. Involved in phagocytosis, maintenance of GBM
- 4. secrete growth factors

Macula densa, MD

- 1. Modified DCT cells
- 2. With single cilium
- 3. Sensitive to osmolarity and volume of filtrate
- 4. Regulates glomerular filtration rate

•Efferent arteriole

Juxtaglomerular Apparatus and Functions

Macula Densa, MD

- 1. Modified DCT cells
- 2. With single cilium
- 3. Smaller
 and
 regularly
 arranged
 4. Cells with
 reversed
 polarity

: Thick basement membrane of glomerular capillaries

∇ : MD

Macula ensa MD

JG cells

JG apparatus

JG apparatus

- Macula densa,
 MD
- JG cells with secretory granules (renin)

Interstitial tissue

- Located between renal tubules and vessel network
- Fibroblast-like cells
- Synthesize collagen
- Secrete <u>erythropoietin</u>
 (?)

SUMMARY 1

Urine production

 Remove metabolic wastes from blood by filtration

Renal Corpuscles

- Regulate the balance between water and electrolytes
 - Re-absorption of water and electrolytes selectively
 - Excretion of urea, uric acid, creatinine etc.

Renal tubules & collecting tubules/ducts

- Secretion of certain enzymes or cytokines
 - Renin: Juxtaglomerular (JG) cells
 - Erythropoietin: interstitial cells

Ureter

Dec. 18, 2017

Ureter

Urinary bladder

Dec. 18, 2017

Urothelium

Collapsed

Distended

Dec. 18, 2017

Transitional epithelium

Large superficial (facet or umbrella) cells with two nuclei

Dec. 18, 2017

Urothelium

Giant superficial (facet or umbrella) cells To enable them to stretch To withstand high tonicity urine With specialized luminal membrane

Dec. 18, 2017

Summary 2

- Lobes vs lobules of kidney
- Nephron structure and function
- Uriniferous tubules and function
- JG apparatus and function
- Ureter/bladder and urothelium and its membrane specialization

End

Dec. 18, 2017

Review questions

- What is a nephron?
- What constitutes the filtration barrier?
- Summarize the histological features of the renal tubules in the form of a table.
- What constitutes the JG apparatus? What is its function?