# Development of the Digestive System

W.S. O

The University of Hong Kong



# Plan for the GI system

- Then GI system in the abdomen first develops as a tube suspended by dorsal and ventral mesenteries. Blood vessels autonomic nerves, lymphatic drainage are organized according to abdominal foregut, midgut and hindgut subdivisions.
- The basic relationships persist, but the adult form appears complex because of five developments:
  - (1) rotation of the foregut tube 90° clockwise;
  - (2) dorsal mesentery persist in all subdivisions while ventral mesentery only persist in foregut;
  - (3) rotation of the midgut 270° around the superior mesenteric artery,
  - (4) tremendous growth of the midgut

#### Organization of the GI tract:

- Foregut (abdominal part) supplied by *coeliac trunk*; derivatives include oral cavity, oesophagus, stomach, duodenum, liver, gall bladder and pancreas
- Midgut supplied by superior mesenteric artery; derivatives include duodenum, small intestine, caecum, anterior 2/3 transverse colon
- Hindgut supplied by inferior mesenteric artery; derivatives include distal 1/3 transverse colon, descending colon, sigmoid colon, rectum and upper part of anal canal











Layout of Foregut, midgut and hindgut

Dorsal and ventral mesenteries



Development of the foregut, midgut & hindgut

## Early gut development

- Coelom formation
- Buccopharyngeal membrane (perforates around 4<sup>th</sup> week) and cloacal membrane (~ 7<sup>th</sup> week)
- Primitive gut wall:

   epithelial lining & associated glands –
   endoderm
  - Connective tissue & smooth muscle surrounding mesoderm

## Development of the distal foregut-1

- Oesophagus
  - no coelomic cavity in thorax
  - slow growth
- Stomach
  - Rotate 90° (clockwise, longitudinal axis)
  - Rotate 90° (clockwise, AP axis)
  - Differential growth:
     ventral border slow growth (*lesser curvature*)
     dorsal border rapid growth (*greater curvature*)

#### vacuoles



Rotation of the stomach around its longitudinal axis



Rotates at longitudinal axis

Rotates at AP axis

D 56 days

**Rotations of the stomach** 

#### Development of the distal foregut-2

- **Duodenum** pushed to the right and becomes *secondarily retroperitoneal*.
- Liver & gall bladder ventral outgrowth from duodenum: *hepatic diverticulum* and *cystic diverticulum*
- Pancreas dorsal pancreatic bud (*main gland* with head, body and tail) and **ventral pancreatic bud** (*uncinate process*); the two buds fuse after the stomach rotates.



Mechanism by which portions of the gut become secondarily retroperitoneal



#### Development of the liver and pancreas



**Anomalous pancreas** 



#### Formation of the liver and associated membranes



#### Development of the midgut - 1

#### Cranial limb of the midgut

- Characterized by rapid elongation and rotation
- Axis of rotation is around the superior mesenteric artery (dorsoventral axis) 90° anticlockwise and herniates into the umbilical cord (~ 6-8 wk)
- Rapid elongation and retraction of herniated gut into abdominal cavity ~10 wk (further rotates 180°; i.e. a total of 270° rotation)

Axis of *rotation* is around superior mesenteric artery

Rotation is 90° anticlockwise

Aorta
Stomach
Superior
mesenteric
artery

Superior
mesenteric
artery

Cecum

To days

Superior
mesenteric
artery

Superior
mesenteric
artery

To days

Growth in length of the cranial limb; herniation into the umbilical cord – 6-8 wk

Reduction of herniated gut into the abdominal cavity with a further 180° rotation -10 wk



A total of 270° rotation; cecum descend to lower abdomen.



Rotates 90° anticlockwise without further 180° rotation

Rotates 90° clockwise

Malformation during rotation of the gut

#### Development of the midgut - 2

- Mid point of midgut loop remains connected with yolk sac with a narrow vitelline duct embedded in the umbilicus
- Vitelline duct normally regresses between the 5-8<sup>th</sup> week and later obliterates into a fibrous cord and degenerates complete.
- In 2% of the infants, abnormal remains of the vitelline duct forms *Meckel's diverticulum*; *vitelline cyst* or *vitelline fistula*.



Remnants of the vitelline duct

#### Development of the midgut - 3

- Caudal limb of midgut is characterized by slow growth.
- Rotation of the cranial limb throws the caudal limb into an arch at the perimeter of the abdominal cavity.
- The caecum rests below the liver and later 'descends' in the abdomen.
- The ascending and descending colon become *secondarily retroperitoneal*.



Figure 13.26. Successive stages in development of the cecum and appendix. A. 7 weeks. B. 8 weeks. C. Newborn.





#### Development of the hindgut

- The distal end of the primitive gut expand to form the **cloaca**.
- Between the 4<sup>th</sup> 6<sup>th</sup> week, the cloaca is partitioned into a **dorsal anorectal canal** and a ventral primitive **urogenital sinus** by the growth of a coronal partition called the **urorectal septum**.
- The urorectal septum consists of a superior Tourneux fold and a pair of lateral folds called the Rathke folds.



Subdivision of the cloaca into an anterior primitve *urogenital sinus* and a posterior *rectum* (week 4-6).



Lower third of anorectal canal formed by ectodermal invagination

#### Inferior third of anorectal canal

- The superior two-third of the anorectal canal forms from the distal part of the hindgut.
- Inferior third formed from an **ectodermal pit** called the anal pit or **proctodeum**.
- The membrane separating the endoderm and ectoderm breaks in the 8<sup>th</sup> week.(Pectinate line)
  - Superior to pectinate line supplied by branches of inferior mesenteric artery
  - Inferior to pectinate line supplied by branches of the *internal iliac arteries*.

# **Congential** malformations



Imperforate anus – anal membrane persists



Imperforate anus with rectal atresia



Formation of definitive gut lumen



The most common bowel atresias and stenoses

Most are caused by vascular accidents; stenosis in the upper duodenum may be caused by a lack of recanalization.



Congenital defect – A & B omphalocele; C gastroschisis

Combined incidents -1/2000 births

#### Reference:

Sadler TW Langman's Medical Embryology 9<sup>th</sup> edition, 2004, pp. 285-319.